首页> 外文期刊>Neurocomputing >Neural-network-based distributed adaptive asymptotically consensus tracking control for nonlinear multiagent systems with input quantization and actuator faults
【24h】

Neural-network-based distributed adaptive asymptotically consensus tracking control for nonlinear multiagent systems with input quantization and actuator faults

机译:输入量化和执行器故障的非线性多智能体系统基于神经网络的分布式自适应渐近共识跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the consensus asymptotic convergence problem for a class of nth-order strict-feedback multiagent systems, which include the input quantization, actuator faults, unknown nonlinear functions and directed communication topology. Because the upper bounds of the time-varying stuck faults and external disturbance are commonly difficult to accurately determine, it is also assumed that these upper bounds are unknown in this paper. First, a group of first-order filters are designed to estimate the bounds of the reference signal for each agent. Second, smooth functions are introduced to compensate the effect of quantization and bounded stuck faults. Meanwhile, a new back-stepping method is used to propose an intermediate control law and an adaptive design procedure, and the final distributed control protocols are established. All closed-loop signals are uniformly bounded, and the tracking errors asymptotically converge to zero. Finally, a practical example simulation is provided to demonstrate the effectiveness of the proposed scheme. (C) 2019 Elsevier B.V. All rights reserved.
机译:研究了一类n阶严格反馈多主体系统的共识渐近收敛问题,包括输入量化,执行器故障,未知非线性函数和定向通信拓扑。由于通常难以准确确定随时间变化的卡锁故障和外部干扰的上限,因此还假定这些上限在本文中是未知的。首先,设计一组一阶滤波器以估计每个代理的参考信号范围。其次,引入平滑函数来补偿量化和有界卡住故障的影响。同时,采用一种新的反推方法提出了一种中间控制律和自适应设计程序,并建立了最终的分布式控制协议。所有闭环信号均一地有界,并且跟踪误差渐近收敛于零。最后,提供了一个实例仿真来证明所提方案的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第15期|64-76|共13页
  • 作者单位

    Univ Shanghai Sci & Technol, Dept Control Sci & Engn, Shanghai 200093, Peoples R China;

    Univ Shanghai Sci & Technol, Dept Control Sci & Engn, Shanghai 200093, Peoples R China;

    Univ Shanghai Sci & Technol, Dept Control Sci & Engn, Shanghai 200093, Peoples R China;

    Univ Shanghai Sci & Technol, Dept Control Sci & Engn, Shanghai 200093, Peoples R China;

    Univ Nevada, Dept Elect & Biomed Engn, Reno, NV 89557 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Distributed consensus control; Neural networks; Input quantization; Actuator fault; Consensus asymptotic convergence;

    机译:分布式共识控制;神经网络;输入量化;执行器故障;共识渐近收敛;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号