...
首页> 外文期刊>Neurocomputing >Robust sequential subspace clustering via ℓ_1-norm temporal graph
【24h】

Robust sequential subspace clustering via ℓ_1-norm temporal graph

机译:通过ℓ_1-范数时间图进行鲁棒的顺序子空间聚类

获取原文
获取原文并翻译 | 示例

摘要

Subspace clustering (SC) has been widely applied to segment data drawn from multiple subspaces. However, for sequential data, a main challenge in subspace clustering is to exploit temporal information. In this paper, we propose a novel robust sequential subspace clustering approach with a l(1)-norm temporal graph. The l(1)-norm temporal graph is designed to encode the temporal information underlying in sequential data. By using the l(1) norm, it can enforce well temporal similarity of neighboring frames with a sample-dependent weight, and mitigate the effect of noises and outliers on subspace clustering because large errors mixed in the real data can be suppressed. Under assumption of data self-expression, our clustering model is put forward by further integrating the classical Sparse Subspace Clustering and the l(1)-norm Temporal Graph (SSC-L1TG). To solve the proposed model, we introduce a new efficient proximity algorithm. At each iteration, the sub-problem is solved by proximal minimization with closed-form solution. In contrast to the alternating direction method of multipliers (ADMM) employed in most existing clustering approaches without convergence guarantee, the proposed SSC-L1TG is guaranteed to converge to the desired optimal solution. Experimental results on both synthetic and real data demonstrate the efficacy of our method and its superior performance over the state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:子空间聚类(SC)已广泛应用于从多个子空间提取的分段数据。但是,对于顺序数据,子空间聚类中的主要挑战是利用时间信息。在本文中,我们提出了一种具有l(1)-范数时态图的新型鲁棒顺序子空间聚类方法。 l(1)-范数时间图旨在对顺序数据中的时间信息进行编码。通过使用l(1)范数,它可以很好地增强相邻帧在时间上的相似性,并具有依赖于样本的权重,并且可以减轻噪声和离群值对子空间聚类的影响,因为可以抑制混入实际数据中的大错误。在数据自我表达的假设下,通过进一步融合经典的稀疏子空间聚类和l(1)-范数时间图(SSC-L1TG),提出了我们的聚类模型。为了解决该模型,我们引入了一种新的有效的邻近算法。在每次迭代中,通过使用封闭形式的解决方案将近端最小化来解决子问题。与大多数现有的没有收敛保证的聚类方法所采用的交替方向乘法器(ADMM)相比,所建议的SSC-L1TG可确保收敛到所需的最佳解。综合和真实数据的实验结果证明了我们的方法的有效性及其优于最新方法的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第28期|380-395|共16页
  • 作者

  • 作者单位

    Gannan Normal Univ Sch Math & Comp Sci Ganzhou Peoples R China;

    Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou Peoples R China|Shanghai Univ Med & Hlth Sci Shanghai Peoples R China;

    Hangzhou Dianzi Univ Sch Sci Dept Math Hangzhou Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sequential data; Sparse subspace clustering (SSC); Low rank representation (LRR); Proximal gradient; l(2; 1) norm;

    机译:顺序数据;稀疏子空间聚类(SSC);低等级表示(LRR);近端梯度l(2;1)范数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号