首页> 外文期刊>Signal processing >Scalable and robust sparse subspace clustering using randomized clustering and multilayer graphs
【24h】

Scalable and robust sparse subspace clustering using randomized clustering and multilayer graphs

机译:使用随机聚类和多层图形的可扩展和强大的稀疏子空间群集

获取原文
获取原文并翻译 | 示例

摘要

Sparse subspace clustering (SSC) is a state-of-the-art method for partitioning data points into the union of subspaces. However, it is not practical for large datasets as it requires solving a LASSO problem for each data point, where the number of variables in each LASSO problem is the number of data points. To improve the scalability of SSC, we propose to select a few sets of anchor points using a randomized hierarchical clustering method, and, for each set of anchor points, solve the LASSO problems for each data point allowing only anchor points to have a non-zero weight. This generates a multilayer graph where each layer corresponds to a set of anchor points. Using the Grassmann manifold of orthogonal matrices, the shared connectivity among the layers is summarized within a single subspace. Finally, we use k-means clustering within that subspace to cluster the data points, as done by SSC. We show on both synthetic and real-world datasets that the proposed method not only allows SSC to scale to large-scale datasets, but that it is also much more robust as it performs significantly better on noisy data and on data with close susbspaces and outliers, while it is not prone to oversegmentation. (C) 2019 Elsevier B.V. All rights reserved.
机译:稀疏子空间聚类(SSC)是一种用于将数据点分区的最先进的方法,进入子空间的联合。但是,对于大型数据集来说,这是不实用的,因为它需要解决每个数据点的套索问题,其中每个套索问题中的变量数是数据点的数量。为了提高SSC的可扩展性,我们建议使用随机分层聚类方法选择几套锚点,并且对于每组锚点,可以解决每个数据点的套索问题,允许仅锚点具有非 - 零重量。这产生了多层图,其中每个层对应于一组锚点。使用正交矩阵的基层歧管,在单个子空间中总结了层之间的共享连接。最后,我们在该子空间中使用K-means群集来群集数据点,如SSC所做。我们在合成和现实世界数据集上展示了所提出的方法,不仅允许SSC缩放到大规模数据集,但由于它在噪声数据和近似/缺饮和异常值的数据上执行更好的更好,因此它也是更强大的,虽然不容易过分。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号