首页> 外文期刊>Neurocomputing >Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression
【24h】

Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression

机译:自适应无味卡尔曼滤波器和优化支持向量回归的锂离子电池剩余使用寿命预测

获取原文
获取原文并翻译 | 示例

摘要

To solve the problem of the inaccurate prediction on remaining useful life (RUL) for lithium-ion battery, we proposed an integrated algorithm which combines adaptive unscented kalman filter (AUKF) and genetic algorithm optimized support vector regression (GA-SVR). Firstly, the state space model with double exponential is established to describe the degradation of lithium battery. Then, the AUKF algorithm is introduced to update adaptively both the process noise covariance and the observation noise covariance. Next, the genetic algorithm is utilized to optimize the key parameters of SVR which realizes multi-step prediction. The effectiveness of the proposed method is verified by simulation experiments with NASA of battery dataset. Simulation results show that the proposed AUKF-GA-SVR achieves better prediction accuracy than existed methods such as unscented kalman filter, extended kalman filter, adaptive extended kalman filter (AEKF), adaptive unscented kalman filter, unscented kalman filter and relevance vector regression and AEKF-GA-SVR. (C) 2019 Elsevier B.V. All rights reserved.
机译:为解决锂离子电池剩余使用寿命(RUL)预测不准确的问题,我们提出了一种将自适应无味卡尔曼滤波器(AUKF)与遗传算法优化支持向量回归(GA-SVR)相结合的集成算法。首先,建立了具有双指数的状态空间模型来描述锂电池的退化。然后,引入AUKF算法以自适应地更新过程噪声协方差和观察噪声协方差。接下来,利用遗传算法对SVR的关键参数进行优化,实现多步预测。通过电池数据集的NASA仿真实验验证了该方法的有效性。仿真结果表明,所提出的AUKF-GA-SVR具有比无味卡尔曼滤波器,扩展卡尔曼滤波器,自适应扩展卡尔曼滤波器(AEKF),自适应无味卡尔曼滤波器,无味卡尔曼滤波器和相关矢量回归以及AEKF等现有方法更好的预测精度。 -GA-SVR。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第1期|95-102|共8页
  • 作者

  • 作者单位

    Wuhan Univ Sci & Technol Sch Informat Sci & Engn Wuhan 430081 Hubei Peoples R China|Minist Educ Engn Res Ctr Met Automat & Measurement Technol Wuhan 430081 Hubei Peoples R China;

    Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci & Technol Sch Mech Sci & Engn Wuhan 430074 Hubei Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Remaining useful life prediction; Adaptive unscented kalman filter; Genetic algorithm; Support vector regression;

    机译:剩余使用寿命预测;自适应无味卡尔曼滤波器;遗传算法支持向量回归;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号