首页> 外文期刊>Neurocomputing >A dynamical-structure neural network model specified for representing logical relations with inhibitory links and fewer neurons
【24h】

A dynamical-structure neural network model specified for representing logical relations with inhibitory links and fewer neurons

机译:指定用于表示具有抑制链接和较少神经元的逻辑关系的动态结构神经网络模型

获取原文
获取原文并翻译 | 示例

摘要

To make ANNs have the ability of logical processing in order to fulfil the urgent requirement that computers can automatically judge according to numerous specific conditions, researches have been carried out to design novel neural network models for representing logical relations. Recently, a new ANN model for representing logical relations is proposed. In the model, six components are designed to simulate the operations of logic gates. The work provides a novel way for constructing logical relations running in a neural-like manner. However, the components are still complex and indirect for the representation since more extra neurons and links are needed to simulate logic gates. In order to represent logical relations more directly, this paper defines new neurons and multiple kinds of links to represent logic gates directly, and they can be combined to represent complex logical relations in a simpler neural network structures with fewer neurons. Additionally, this ANN model can dynamically create links on demand instead of the fixed full connections. It can constantly adjust its network structure when getting the data continuously. It can be used for the establishment of the rule library of the intelligent information system in the form of the neural network structure. (C) 2019 Elsevier B.V. All rights reserved.
机译:为了使人工神经网络具有逻辑处理能力,以满足计算机可以根据多种特定条件自动判断的紧急需求,已经进行了研究以设计新颖的神经网络模型来表示逻辑关系。最近,提出了一种新的用于表示逻辑关系的ANN模型。在该模型中,设计了六个组件来模拟逻辑门的操作。该工作为构建以类似神经的方式运行的逻辑关系提供了一种新颖的方法。但是,由于模拟逻辑门需要更多的额外神经元和链接,因此表示的组件仍然很复杂和间接。为了更直接地表示逻辑关系,本文定义了新的神经元和多种链接来直接表示逻辑门,并且可以将它们组合起来以在神经元较少的简单神经网络结构中表示复杂的逻辑关系。此外,该ANN模型可以按需动态创建链接,而不是固定的完整连接。当连续获取数据时,它可以不断调整其网络结构。它可以以神经网络结构的形式用于建立智能信息系统的规则库。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号