首页> 外文期刊>Journal of Computational Electronics >Memristive biophysical neuron models forming an excitatory-inhibitory neural network for modeling PING rhythm generation
【24h】

Memristive biophysical neuron models forming an excitatory-inhibitory neural network for modeling PING rhythm generation

机译:膜质生物物理神经元模型形成兴奋性抑制性神经网络,用于建模Ping节奏生成

获取原文
获取原文并翻译 | 示例

摘要

SPICE models are constructed for memristive devices to form associated biophysical neuron circuit models such as the Hodgkin-Huxley (HH) type II excitability neuron circuit model, the HH type III excitability neuron circuit model, the simplified HH neuron circuit model, the Morris-Lecar neuron circuit model, and the memristive based direct-current (DC) circuit model. Rigorous nonlinear circuit-theoretic principles are also applied to analyze the different behaviors of the generic memristor Na+-ion, K+-ion, and Ca++-ion channels forming these biophysical neuron circuit models. Detailed explanations and clarifications are presented on the memristive HH type II and HH type III axonal excitabilities based on mathematical analysis as well as the circuit models. This is done from the perspective of the spike patterns generated by both of these biophysical neuron circuit models. Moreover, various experimental studies have revealed a synchronous brain state known as gamma rhythms that are responsible for sensory, memory, and motor processes. This suggests that understanding how the gamma oscillation (30-100 Hz) is generated in the brain will be extremely important to unravel the link between the activity of an individual neuron and the cognitive processing achieved by a population of networked neurons. We thus also study the dynamics of an interconnected excitatory-inhibitory (E-I) network population, which is ubiquitous in the brain. Utilizing biophysical models of the E-I network, we investigate the generation of pyramidal-interneuronal network gamma (PING) rhythms caused by the external input to the network and the connectivity heterogeneities. The results reveal that synchronous strong PING and sparsely firing weak PING rhythms are generated based on the network connectivities and external input heterogeneities in simulations of 100 memristive HH type II excitability neurons forming an E-I network.
机译:SPICE模型是为椎板型器件构建的,以形成相关的生物物理神经元电路模型,如Hodgkin-Huxley(HH)II型兴奋性神经元电路模型,HH型III兴奋性神经元电路模型,简化的HH神经元电路模型,Morris-Lecar神经元电路模型,基于忆阻直流(DC)电路模型。还应用严格的非线性电路 - 理论原理来分析形成这些生物物理神经元电路模型的通用膜Na + -Ion,K + +和Ca ++离子通道的不同行为。基于数学分析以及电路模型,在Memristive HH II型和HH III型轴突刺发器上提出了详细的解释和澄清。这是从由这两种生物物理神经元电路模型产生的尖峰图案的角度来完成的。此外,各种实验研究揭示了称为伽马节奏的同步脑状态,该节奏负责感觉,记忆和电动机过程。这表明了解伽马振荡(30-100Hz)在大脑中产生的是如何极为重要,以解开个体神经元的活动与通过网络神经元群体所实现的认知处理之间的联系。因此,我们还研究了互联兴奋性抑制(E-I)网络群的动态,这在大脑中普遍存在。利用E-I网络的生物物理模型,我们调查由网络和连接异质的外部输入引起的金字塔内部网络伽马(Ping)节奏的产生。结果表明,基于形成E-I网络的100次忆晶HH型II兴奋性神经元的网络连接和外部输入异质性产生同步强度和稀疏射击弱ping节奏。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号