首页> 外文期刊>Neurocomputing >Adaptive neural network-based control of uncertain nonlinear systems with time-varying full-state constraints and input constraint
【24h】

Adaptive neural network-based control of uncertain nonlinear systems with time-varying full-state constraints and input constraint

机译:时变全状态约束和输入约束的不确定非线性系统的基于神经网络的自适应控制

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the problem of state-constraint adaptive neural network-based tracking control for a class of nonlinear systems with input saturation constraint. The considered systems are with uncertain nonlinearities which are not required to be globally Lipschitz or be with a prior knowledge of the structure. To facilitate the stability analysis, radial basis function neural networks (RBFNNs) are first utilized to approximate the unknown nonlinear terms. The constraint problem of input saturation often appears in the control system. To solve above issue, a novel adaptive control scheme is proposed with the help of an augmented function with auxiliary control signal, which ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded. On the other hand, to guarantee better transient performance under input saturation, an improved barrier Lyapunov function with time-varying barriers is developed, which makes the tracking errors preserve within the specified constraint bounds. Simulation results are given to demonstrate the effectiveness of the proposed approach. (C) 2019 Elsevier B.V. All rights reserved.
机译:针对一类具有输入饱和约束的非线性系统,研究了基于状态约束的自适应神经网络跟踪控制问题。所考虑的系统具有不确定的非线性,不需要全局性的Lipschitz或具有结构的先验知识。为了促进稳定性分析,首先使用径向基函数神经网络(RBFNN)来近似未知的非线性项。输入饱和的约束问题经常出现在控制系统中。为了解决上述问题,提出了一种新的自适应控制方案,该方案借助辅助控制信号的增强功能,可以确保所有闭环信号最终在半全局均匀地有界。另一方面,为了保证在输入饱和下更好的瞬态性能,开发了具有时变势垒的改进的势垒Lyapunov函数,该函数使跟踪误差保持在指定的约束范围内。仿真结果表明了该方法的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第10期|108-115|共8页
  • 作者

    Xi Changjiang; Dong Jiuxiang;

  • 作者单位

    Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China|Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Liaoning, Peoples R China|Northeastern Univ, Minist Educ, Key Lab Vibrat & Control Aeroprop Syst, Shenyang 110819, Liaoning, Peoples R China;

    Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China|Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Liaoning, Peoples R China|Northeastern Univ, Minist Educ, Key Lab Vibrat & Control Aeroprop Syst, Shenyang 110819, Liaoning, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Adaptive neural network-based control; Uncertain nonlinear systems; Backstepping technique; Barrier Lyapunov function; Input saturation;

    机译:基于自适应神经网络的控制;不确定的非线性系统;后推技术;屏障Lyapunov函数;输入饱和;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号