首页> 外文期刊>Neurocomputing >Fully convolutional measurement network for compressive sensing image reconstruction
【24h】

Fully convolutional measurement network for compressive sensing image reconstruction

机译:全卷积测量网络用于压缩感知图像重建

获取原文
获取原文并翻译 | 示例

摘要

Recently, deep learning methods have made a significant improvement in compressive sensing image reconstruction task. In the existing methods, the scene is measured block by block due to the high computational complexity. This results in block-effect of the recovered images. In this paper, we propose a fully convolutional measurement network, where the scene is measured as a whole. The proposed method powerfully removes the block-effect since the structure information of scene images is preserved. To make the measure more flexible, the measurement and the recovery parts are jointly trained. From the experiments, it is shown that the results by the proposed method outperforms those by the existing methods in PSNR, SSIM, and visual effect. (C) 2018 Elsevier B.V. All rights reserved.
机译:近来,深度学习方法在压缩感测图像重建任务中取得了重大进步。在现有方法中,由于计算复杂度高,因此逐块地测量场景。这导致恢复图像的块效应。在本文中,我们提出了一个完整的卷积测量网络,其中对场景进行了整体测量。由于保留了场景图像的结构信息,因此该方法有效地消除了块效应。为了使度量更加灵活,对度量和恢复部分进行了联合培训。实验表明,该方法在PSNR,SSIM和视觉效果上均优于现有方法。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号