首页> 外文期刊>Computational Imaging, IEEE Transactions on >Convolutional Neural Networks for Noniterative Reconstruction of Compressively Sensed Images
【24h】

Convolutional Neural Networks for Noniterative Reconstruction of Compressively Sensed Images

机译:卷积神经网络用于压缩感知图像的非迭代重建

获取原文
获取原文并翻译 | 示例

摘要

Traditional algorithms for compressive sensing recovery are computationally expensive and are ineffective at low measurement rates. In this paper, we propose a data-driven noniterative algorithm to overcome the shortcomings of earlier iterative algorithms. Our solution,nReconNetn, is a deep neural network, which is learned end-to-end to map block-wise compressive measurements of the scene to the desired image blocks. Reconstruction of an image becomes a simple forward pass through the network and can be done in real time. We show empirically that our algorithm yields reconstructions with higher peak signal-to-noise ratios (PSNRs) compared to iterative algorithms at low measurement rates and in presence of measurement noise. We also propose a variant of ReconNet, which uses adversarial loss in order to further improve reconstruction quality. We discuss how adding a fully connected layer to the existing ReconNet architecture allows for jointly learning the measurement matrix and the reconstruction algorithm in a single network. Experiments on real data obtained from a block compressive imager show that our networks are robust to unseen sensor noise.
机译:用于压缩感测恢复的传统算法在计算上昂贵,并且在低测量速率下无效。在本文中,我们提出了一种数据驱动的非迭代算法,以克服早期迭代算法的缺点。我们的解决方案,n ReconNet n是一个深度神经网络,它是端到端学习的,用于将场景的逐块压缩测量值映射到所需的图像块。图像重建成为通过网络的简单前向传递,并且可以实时完成。我们凭经验证明,与迭代算法相比,在低测量速率和存在测量噪声的情况下,与迭代算法相比,我们的算法可产生具有更高峰值信噪比(PSNR)的重构。我们还提出了ReconNet的一种变体,它使用对抗性损失来进一步提高重建质量。我们讨论了如何在现有ReconNet体系结构上添加一个完全连接的层,从而允许在单个网络中共同学习测量矩阵和重构算法。从块压缩成像仪获得的真实数据的实验表明,我们的网络对于看不见的传感器噪声具有鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号