首页> 外文期刊>Neurocomputing >Reactive obstacle avoidance of monocular quadrotors with online adapted depth prediction network
【24h】

Reactive obstacle avoidance of monocular quadrotors with online adapted depth prediction network

机译:在线自适应深度预测网络的单眼四旋翼反应器避障

获取原文
获取原文并翻译 | 示例

摘要

Obstacle avoidance based on a monocular camera is a fundamental yet highly challenging task due to the lack of 3D information for a monocular quadrotor. Recent methods based on convolutional neural networks (CNNs) [1] for monocular depth estimation and obstacle detection become increasingly popular due to the considerable advances in deep learning. However, depth estimation by pre-trained CNNs usually suffers from large accuracy degradation for scenes of different types from the training data which are common for obstacle avoidance of drones in unknown environments. In this paper, we present a reactive obstacle avoidance system which employs an online adaptive CNN for progressively improving depth estimation from a monocular camera in unfamiliar environments. Pairs of motion stereo images are collected on-the-fly as training data based on a direct monocular SLAM running in parallel with the CNN. Novel approaches are introduced for selecting highly reliable training samples from noisy data provided by SLAM and efficient online CNN tuning. The depth map computed from the CNN is transformed into Ego Dynamic Space (EDS) by embedding both dynamic motion constraints of a quadrotor and depth estimation errors into the spatial depth map. Traversable waypoints with consideration of the camera's field of view constraint are automatically computed in EDS based on which appropriate control inputs for the quadcopter are produced. Experimental results on both public datasets, simulated environments and unseen cluttered indoor environments demonstrate the effectiveness of our system. (C) 2018 Elsevier B.V. All rights reserved.
机译:由于单眼四旋翼飞行器缺乏3D信息,基于单眼照相机的避障是一项基本但极具挑战性的任务。由于深度学习的巨大进步,基于卷积神经网络(CNN)[1]的最新方法用于单眼深度估计和障碍物检测变得越来越流行。然而,对于训练类型不同的场景而言,通过预训练的CNN进行深度估计通常会遭受很大的精度下降,这对于未知环境中的无人机避障来说是很常见的。在本文中,我们介绍了一种反应式避障系统,该系统采用在线自适应CNN逐步改善在陌生环境中单眼相机的深度估计。基于与CNN并行运行的直接单眼SLAM,动态收集成对的运动立体图像作为训练数据。引入了新颖的方法,用于从SLAM提供的嘈杂数据和高效的在线CNN调整中选择高度可靠的训练样本。通过将四旋翼的动态运动约束和深度估计误差都嵌入到空间深度图中,将从CNN计算出的深度图转换为自我动态空间(EDS)。在EDS中自动计算考虑了摄像机视场约束的可穿越航路点,并根据该点为四轴飞行器产生适当的控制输入。在公共数据集,模拟环境和看不见的室内环境上的实验结果证明了我们系统的有效性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第24期|142-158|共17页
  • 作者单位

    Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan, Hubei, Peoples R China;

    HiScene Informat Technol Co Ltd, Shanghai, Peoples R China;

    Hong Kong Univ Sci & Technol, Sch Engn, Kowloon, Hong Kong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Obstacle avoidance; Convolution neural networks; Online tuning; Depth estimation;

    机译:避障;卷积神经网络;在线调整;深度估计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号