首页> 外文期刊>Neurocomputing >Autonomous quadrotor obstacle avoidance based on dueling double deep recurrent Q-learning with monocular vision
【24h】

Autonomous quadrotor obstacle avoidance based on dueling double deep recurrent Q-learning with monocular vision

机译:基于Dueling Double Deak Readurent Q-Learning的自主四脉冲障碍避免,单眼视觉

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel learning-based framework to realize quadrotor autonomous obstacle avoidance with monocular vision. The framework adopts a two-stage architecture, consisting of a sensing module and a decision module. The sensing module trained in an unsupervised manner can extract depth information from the on-board camera image. Moreover, the decision module uses dueling double deep recurrent Q-learning to eliminate the adverse effects of the on-board monocular camera & rsquo;s limited observation capacity while choosing practical obstacle avoidance action. The framework has two advantages: (1) it enables the quadrotor to realize autonomous obstacle avoidance without any prior environment information or labeled datasets for training, and (2) its model can be easily updated while facing new application scenarios. The experiments in several different simulation scenes show that the trained framework outperforms a high passing rate in crowded environments and a good generalization ability for transformed scenarios.(C)& nbsp;2021 Published by Elsevier B.V.
机译:本文提出了一种基于学习的基于学习的框架,以实现与单眼视觉的四轮电机自主障碍避免。该框架采用两级架构,包括传感模块和决策模块。以无监督方式训练的感测模块可以从车载摄像机图像中提取深度信息。此外,决策模块采用决斗双重经常性Q游,消除了板载单眼相机和rsquo; S有限的观察能力的不利影响,同时选择实用障碍避免动作。该框架具有两个优点:(1)它使得四轮电机能够实现自主障碍避免,而无需任何先前的环境信息或标记数据集进行培训,并且(2)在面对新的应用方案时可以轻松更新其模型。在几种不同的仿真场景中的实验表明,训练有素的框架优于拥挤环境中的高通率和转换方案的良好概括能力。(c)  2021由elsevier b.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号