首页> 外文期刊>Neurocomputing >Multi-focus: Focused region finding and multi-scale transform for image fusion
【24h】

Multi-focus: Focused region finding and multi-scale transform for image fusion

机译:多焦点:用于图像融合的聚焦区域发现和多尺度变换

获取原文
获取原文并翻译 | 示例

摘要

The purpose of image fusion is to integrate useful information from multiple images and produce a more reliable image. The key problem of multi-focus image fusion is how to determine the focused regions of the source images. As an effective and excellent fusion algorithm, the focused regions in the source images should be preserved as much as possible into the fused image. To accomplish this goal, a novel multi-focus image fusion method based on a focused regions boundary finding and multi-scale transform (MST) is proposed in this paper. The Meanshift algorithm is used to determine the focused regions first. Then, an edge detection method and morphological method are used to find the boundaries of the focused regions in the source images. For the focused boundary regions, the combination of pulse coupled neural network (PCNN) and Gaussian fuzzy method is used to produce the fused boundary region in nonsubsampled contourlet transform (NSCT) domain. Finally, the fused boundary region and the focused region of the source images are fused directly. The experimental results demonstrate that the proposed algorithm can accurately determine the focused regions, and at the same time, a better fused boundary region can be obtained; this algorithm is superior to conventional methods with respect to both objective quality evaluations and visual inspection. (C) 2018 Elsevier B.V. All rights reserved.
机译:图像融合的目的是整合来自多个图像的有用信息,并生成更可靠的图像。多焦点图像融合的关键问题是如何确定源图像的焦点区域。作为一种有效且出色的融合算法,应将源图像中的聚焦区域尽可能多地保留到融合图像中。为了实现这一目标,提出了一种基于聚焦区域边界发现和多尺度变换(MST)的多聚焦图像融合新方法。 Meanshift算法用于首先确定聚焦区域。然后,使用边缘检测方法和形态学方法在源图像中找到聚焦区域的边界。对于聚焦边界区域,结合使用脉冲耦合神经网络(PCNN)和高斯模糊方法在非下采样轮廓波变换(NSCT)域中生成融合边界区域。最后,将源图像的融合边界区域和聚焦区域直接融合。实验结果表明,该算法能够准确地确定聚焦区域,同时可以获得较好的融合边界区域。就客观质量评估和视觉检查而言,该算法优于传统方法。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号