首页> 外文期刊>Neurocomputing >Computing conditional probabilities in a minimal CA3 pyramidal neuron
【24h】

Computing conditional probabilities in a minimal CA3 pyramidal neuron

机译:计算最小CA3锥体神经元中的条件概率

获取原文
获取原文并翻译 | 示例

摘要

The function of the CA3 region of the hippocampus can be explained in terms of a sequence predicting recoder. For the CA3 to act as a neural prediction device, each CA3 neuron must also act as a predictor. Thus, such neurons, as prediction devices, compute something that might approximate a conditional probability. In particular, we conjecture that each neuron forecasts its own firing. Here we compare a simple neural network model, based on synaptic encoding of local conditional probabilities to an even simpler model of hippocampal region CA3 that succeeds on a variety of hippocampally dependent learning tasks.
机译:海马CA3区的功能可以通过序列预测编码器来解释。为了使CA3充当神经预测设备,每个CA3神经元也必须充当预测器。因此,这种神经元,作为预测设备,计算出可能接近条件概率的值。特别是,我们推测每个神经元都会预测自己的放电。在这里,我们将基于局部条件概率的突触编码的简单神经网络模型与海马区域CA3的更简单模型进行了比较,该模型在各种海马依赖性学习任务上都取得了成功。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号