首页> 外文期刊>Neurocomputing >Blind separation with unknown number of sources based on auto-trimmed neural network
【24h】

Blind separation with unknown number of sources based on auto-trimmed neural network

机译:基于自动修剪神经网络的未知来源盲分离

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on blind source separation with an unknown number of sources, which is the case generally assumed in most practical applications. Several over-determined neural algorithms (more sensors m than sources n) have been proposed to solve the problems associated with these cases, but separating performance is often sacrificed in order to prevent divergence. The general natural gradient descent can be validly applied to determined algorithms (m = n) only. Therefore, to better solve the problems, an algorithm associating the feed-forward neural network and an auto-trimming technique is proposed. The learning process starts with an over-determined architecture, followed by two steps used in every iteration. First, the number of sources is estimated by using the stability discriminant function, next, the neural network gradually trims redundant nodes according to an instant estimation. Validity and performance of the proposed approaches are demonstrated with computer simulations on artificially synthesized signals and compared with the well-known algorithm proposed by Ye et al.
机译:本文着重于盲源分离和未知数量的源,这是大多数实际应用中通常假定的情况。为了解决与这些情况相关的问题,已经提出了几种超额确定的神经算法(传感器m比源n多),但是为了防止发散,通常牺牲了分离性能。一般自然梯度下降只能有效地应用于确定的算法(m = n)。因此,为了更好地解决该问题,提出了一种将前馈神经网络与自动修剪技术相关联的算法。学习过程始于确定的架构,然后在每次迭代中使用两个步骤。首先,通过使用稳定性判别函数来估计源的数量,其次,神经网络根据即时估计逐渐修剪冗余节点。通过对人工合成信号的计算机仿真证明了所提方法的有效性和性能,并与Ye等人提出的众所周知的算法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号