首页> 外文期刊>IEEE Transactions on Circuits and Systems. 1 >Robust neural networks with on-line learning for blind identification and blind separation of sources
【24h】

Robust neural networks with on-line learning for blind identification and blind separation of sources

机译:具有在线学习功能的鲁棒神经网络,用于盲识别和盲分离源

获取原文
获取原文并翻译 | 示例

摘要

Two unsupervised, self-normalizing, adaptive learning algorithms are developed for robust blind identification and/or blind separation of independent source signals from a linear mixture of them. One of these algorithms is developed for on-line learning of a single-layer feed-forward neural network model and a second one for a feedback (fully recurrent) neural network model. The proposed algorithms are robust, efficient, fast and suitable for real-time implementations. Moreover, they ensure the separation of extremely weak or badly scaled stationary signals, as well as a successful separation even if the mixture matrix is very ill-conditioned (near singular). The performance of the proposed algorithms is illustrated by computer simulation experiments.
机译:开发了两种无监督的,自规范化的自适应学习算法,用于可靠地盲目识别和/或从它们的线性混合中盲目分离独立源信号。开发了其中一种算法用于在线学习单层前馈神经网络模型,另一种算法用于反馈(完全递归)神经网络模型。所提出的算法是鲁棒的,高效的,快速的并且适合于实时实现。而且,即使混合基质条件非常恶劣(接近奇异),它们也可以确保分离极弱或缩放比例很差的固定信号,以及成功分离。计算机仿真实验表明了所提出算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号