首页> 外文期刊>Neurocomputing >Two lattice computing approaches for the unsupervised segmentation of hyperspectral images
【24h】

Two lattice computing approaches for the unsupervised segmentation of hyperspectral images

机译:高光谱图像无监督分割的两种晶格计算方法

获取原文
获取原文并翻译 | 示例

摘要

Endmembers for the spectral unmixing analysis of hyperspectral images are sets of affinely independent vectors, which define a convex polytope covering the data points that represent the pixel image spectra. Strong lattice independence (SLI) is a property defined in the context of lattice associative memories convergence analysis. Recent results show that SLI implies affine independence, confirming the value of lattice associative memories for the study of endmember induction algorithms. In fact, SLI vector sets can be easily deduced from the vectors composing the lattice auto-associative memories (LAM). However, the number of candidate endmembers found by this algorithm is very large, so that some selection algorithm is needed to obtain the full benefits of the approach. In this paper we explore the unsupervised segmentation of hyperspectral images based on the abundance images computed, first, by an endmember selection algorithm and, second, by a previously proposed heuristically defined algorithm. We find their results comparable on a qualitative basis.
机译:高光谱图像的光谱解混分析的最终成员是仿射无关矢量集,它们定义了一个凸多面体,覆盖了代表像素图像光谱的数据点。强晶格独立性(SLI)是在晶格关联内存收敛分析的上下文中定义的属性。最近的结果表明,SLI暗示了仿射无关性,从而证实了晶格联想记忆在端元归纳算法研究中的价值。实际上,可以很容易地从构成晶格自缔合存储器(LAM)的向量中推导出SLI向量集。然而,该算法发现的候选末端成员的数量非常大,因此需要一些选择算法才能获得该方法的全部优点。在本文中,我们将基于首先通过端成员选择算法以及其次通过先前提出的启发式定义算法计算出的丰富图像,探索高光谱图像的无监督分割。我们发现他们的结果在质量上具有可比性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号