首页> 外文会议>Satellite data compression, communications, and processing VI >Unsupervised Segmentation for Hyperspectral Images Using Mean Shift Segmentation
【24h】

Unsupervised Segmentation for Hyperspectral Images Using Mean Shift Segmentation

机译:使用均值漂移分割的高光谱图像无监督分割

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an unsupervised segmentation method for hyperspectral images using mean shift filtering. One major problem of traditional mean shift algorithms is the difficulty of determining kernel bandwidths. We address this problem by using efficient clustering methods. First, PCA (Principal Component Analysis) was applied to hyperspectral images and the first three eigenimages were selected. Then, we applied mean shift filtering to the selected images using a kernel with a small bandwidth. This procedure produced a large number of clusters. In order to merge the homogeneous clusters, we used the Bhattacharyya distance. Experiments showed promising segmentation results without requiring user input.
机译:在本文中,我们提出了一种采用均值漂移滤波的高光谱图像无监督分割方法。传统均值漂移算法的一个主要问题是确定内核带宽的困难。我们通过使用有效的聚类方法来解决此问题。首先,将PCA(主成分分析)应用于高光谱图像,并选择前三个特征图像。然后,我们使用带宽较小的内核对所选图像应用了均值漂移滤波。此过程产生了大量簇。为了合并齐次聚类,我们使用了Bhattacharyya距离。实验表明,不需要用户输入,分割结果很有希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号