首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Unsupervised Segmentation of Hyperspectral Images Using 3-D Convolutional Autoencoders
【24h】

Unsupervised Segmentation of Hyperspectral Images Using 3-D Convolutional Autoencoders

机译:使用3-D卷积自身额外的超光图像的无监督分割

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral image analysis has become an important topic widely researched by the remote sensing community. Classification and segmentation of such imagery help understand the underlying materials within a scanned scene since hyperspectral images convey detailed information captured in a number of spectral bands. Although deep learning has established the state-of-the-art in the field, it still remains challenging to train well-generalizing models due to the lack of ground-truth data. In this letter, we tackle this problem and propose an end-to-end approach to segment hyperspectral images in a fully unsupervised way. We introduce a new deep architecture which couples 3-D convolutional autoencoders with clustering. Our multifaceted experimental study-performed over the benchmark and real-life data-revealed that our approach delivers highquality segmentation without any prior class labels.
机译:高光谱图像分析已成为遥感群落的广泛研究的重要主题。这种图像的分类和分割有助于理解扫描场景中的底层材料,因为高光谱图像传送在许多光谱频带中捕获的详细信息。虽然深入学习在该领域建立了最先进的现实,但由于缺乏地面真实数据训练普遍性的模型仍然仍然具有挑战性。在这封信中,我们解决了这个问题,并提出了以完全无监督的方式分段对高光谱图像的端到端方法。我们介绍了一种新的深层建筑,将3-D卷积的自动化器与聚类联系起来。我们的多方面的实验研究 - 在基准和现实生活数据上进行 - 显示我们的方法在没有任何先前的阶级标签的情况下提供高度分割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号