首页> 外文期刊>Neurocomputing >Improved discriminant sparsity neighborhood preserving embedding for hyperspectral image classification
【24h】

Improved discriminant sparsity neighborhood preserving embedding for hyperspectral image classification

机译:改进的判别稀疏性邻域保留嵌入用于高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

Sparse manifold learning has drawn more and more attentions recently. Discriminant sparse neighborhood preserving embedding (DSNPE) has been proposed, which adds the discriminant information to sparse neighborhood preserving embedding. However, DSNPE does not investigate the inherent manifold structure of data, which may be helpful for dimensionality reduction and classification of hyperspectral image. In this paper, we proposed a new sparse manifold learning method, called improved discriminant sparse neighborhood preserving embedding (iDSNPE), for hyperspectral image classification. iDSNPE utilizes the merits of both manifold structure and sparsity property. It not only preserves the sparse reconstructive relations but also explicitly boosts the discriminating information from manifold structure of data, and the discriminating power of iDSNPE is significantly improved than DSNPE. The effectiveness of the proposed method is verified on two hyperspectral image datasets (Washington DC Mall and Urban) with promising results.
机译:稀疏的流形学习最近引起了越来越多的关注。提出了判别式稀疏邻域保留嵌入(DSNPE),将判别信息添加到稀疏邻域保留嵌入中。但是,DSNPE并未研究数据的固有流形结构,这可能有助于降维和对高光谱图像进行分类。在本文中,我们提出了一种新的稀疏流形学习方法,称为改进的判别式稀疏邻域保留嵌入(iDSNPE),用于高光谱图像分类。 iDSNPE利用了流形结构和稀疏性的优点。它不仅保留了稀疏的重构关系,而且显着地增强了从数据的多种结构中区分信息的能力,并且iDSNPE的区分能力比DSNPE有了显着提高。在两个高光谱图像数据集(华盛顿特区购物中心和城市)上验证了该方法的有效性,并取得了令人鼓舞的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号