首页> 外文期刊>Neurocomputing >Spectral-spatial classification of hyperspectral image based on discriminant sparsity preserving embedding
【24h】

Spectral-spatial classification of hyperspectral image based on discriminant sparsity preserving embedding

机译:基于判别稀疏保留嵌入的高光谱图像光谱空间分类

获取原文
获取原文并翻译 | 示例

摘要

The last few years have witnessed the success of sparse representation in hyperspectral image classification. However, the high computational complexity brings some worries to its applications. In this paper, a novel sparse representation based feature extraction algorithm, called discriminant sparsity preserving embedding (DSPE), is proposed by constructing a sparse graph and applying it to the graph-embedding framework. The proposed algorithm encodes supervised information mainly in stage of sparse graph construction, in which only the training samples in the same class are used to calculated the reconstructive coefficients during sparse reconstruction. An approach combining l(1)-norm and l(2)-norm is applied to solve the reconstruction weights, where-norm ensures the sparsity of the graph weights, l(2)-norm shrinks the weight coefficients to make the construction more stable and alleviate the reconstruction errors possibly caused by small-size training samples. On the premise of satisfied classification results, here a spectral spatial classification strategy which takes spatial information into consideration is used to evaluate the efficiency of the proposed algorithm. Experiments on the Indian Pines and Pavia University hyperspectral image datasets demonstrate the superiority of the proposed algorithm. (C) 2017 Elsevier B.V. All rights reserved.
机译:最近几年见证了稀疏表示在高光谱图像分类中的成功。但是,高计算复杂性给它的应用带来了一些麻烦。通过构造稀疏图并将其应用于图嵌入框架,提出了一种新的基于稀疏表示的特征提取算法,即判别稀疏保留嵌入(DSPE)。该算法主要在稀疏图构造阶段对监督信息进行编码,在稀疏重构过程中,仅使用同一类别的训练样本来计算重构系数。结合l(1)-norm和l(2)-norm的方法来求解重构权重,其中norm-norm确保图权重的稀疏性,l(2)-norm缩小权重系数以使构造更多稳定并减轻了小样本训练样本可能造成的重建误差。在令人满意的分类结果的前提下,这里考虑空间信息的光谱空间分类策略被用于评估所提出算法的效率。在印度松树和帕维亚大学高光谱图像数据集上进行的实验证明了该算法的优越性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号