首页> 外文OA文献 >Classification of Hyperspectral Images Based on Supervised Sparse Embedded Preserving Projection
【2h】

Classification of Hyperspectral Images Based on Supervised Sparse Embedded Preserving Projection

机译:基于监督稀疏嵌入式预测的高光谱图像分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dimensionality reduction is an important research area for hyperspectral remote sensing images due to the redundancy of spectral information. Sparsity preserving projection (SPP) is a dimensionality reduction (DR) algorithm based on the l1-graph, which establishes the relations of samples by sparse representation. However, SPP is an unsupervised algorithm that ignores the label information of samples and the objective function of SPP; instead, it only considers the reconstruction error, which means that the classification effect is constrained. In order to solve this problem, this paper proposes a dimensionality reduction algorithm called the supervised sparse embedded preserving projection (SSEPP) algorithm. SSEPP considers the manifold structure information of samples and makes full use of the label information available in order to enhance the discriminative ability of the projection subspace. While maintaining the sparse reconstruction error, the algorithm also minimizes the error between samples of the same class. Experiments were performed on an Indian Pines hyperspectral dataset and HJ1A-HSI remote sensing images from the Zhangjiang estuary in Southeastern China, respectively. The results show that the proposed method effectively improves its classification accuracy.
机译:减少维度是由于光谱信息冗余导致的高光谱遥感图像的重要研究区域。稀疏保存投影(SPP)是基于L1-Graph的维度减少(DR)算法,其通过稀疏表示来建立样本的关系。但是,SPP是一种无监督算法,忽略样品的标签信息和SPP的目标函数;相反,它仅考虑重建错误,这意味着分类效果被约束。为了解决这个问题,本文提出了一种称为监督稀疏嵌入式保存投影(SSEPP)算法的维度减少算法。 SSEPP考虑样本的歧管结构信息,并充分利用标签信息,以提高投影子空间的辨别能力。在保持稀疏的重建误差时,该算法还会最大限度地减少同一类别的样本之间的错误。在中国东南部的张江河口的印度松树高光谱数据集和HJ1A-HSI遥感图像上进行了实验。结果表明,该方法有效提高了其​​分类准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号