首页> 外文期刊>Neurocomputing >Outlier-robust extreme learning machine for regression problems
【24h】

Outlier-robust extreme learning machine for regression problems

机译:回归问题的异常鲁棒极端学习机

获取原文
获取原文并翻译 | 示例

摘要

Extreme learning machine (ELM), as one of the most useful techniques in machine learning, has attracted extensive attentions due to its unique ability for extremely fast learning. In particular, it is widely recognized that ELM has speed advantage while performing satisfying results. However, the presence of outliers may give rise to unreliable ELM model. In this paper, our study addresses the outlier robustness of ELM in regression problems. Based on the sparsity characteristic of outliers, this work proposes an outlier-robust ELM where the l(1)-norm loss function is used to enhance the robustness. Specially, the fast and accurate augmented Iagrangian multiplier method is applied to guarantee the effectiveness and efficiency. According to the experiments on function approximation and some real-world applications, the proposed approach not only maintains the advantages from original ELM, but also shows notable and stable accuracy in handling data with outliers. (C) 2014 Elsevier B.V. All rights reserved.
机译:极限学习机(ELM)作为机器学习中最有用的技术之一,由于其极速学习的独特能力而引起了广泛的关注。特别是,众所周知,ELM在执行令人满意的结果的同时具有速度优势。但是,异常值的存在可能会导致ELM模型不可靠。在本文中,我们的研究解决了回归问题中ELM的异常鲁棒性。基于异常值的稀疏性特征,本文提出了一种异常鲁棒的ELM,其中使用l(1)-范数损失函数来增强鲁棒性。特别是,为了保证有效性和效率,使用了快速,准确的增广的Iagrangian乘数法。根据函数逼近的实验和一些实际应用,该方法不仅保留了原始ELM的优势,而且在处理异常数据时显示出显着且稳定的精度。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号