首页> 外文期刊>Neurocomputing >Novel adaptive hybrid rule network based on TS fuzzy rules using an improved quantum-behaved particle swarm optimization
【24h】

Novel adaptive hybrid rule network based on TS fuzzy rules using an improved quantum-behaved particle swarm optimization

机译:改进的量子行为粒子群算法的基于TS模糊规则的新型自适应混合规则网络

获取原文
获取原文并翻译 | 示例

摘要

A novel adaptive hybrid rule network (AHRN) based on Takagi-Sugeno (TS) fuzzy rules is proposed to resolve chaotic system prediction problems. This model automatically adjusts its structure and dynamically establishes rule sets (apart from statically) to adapt in learning new samples. For the learning process, the opinion leader-based quantum-behaved particle swarm optimization (OLB-QPSO) algorithm is proposed. This algorithm uses composed particles generated according to AHRN and emphasizes the importance of the composed particle with the highest fitness based on a social communication law. To improve the chance of finding the best global solution, the movement of the composed particle is affected by the subparticles as inner factors and by the swarm as outer factor. Three chaotic time series experiments are performed to validate the proposed method. Results show that AHRN that uses the OLB-QPSO with composed particles can effectively provide the appropriate rules to search for solutions in a wide space and significantly improve the probability of obtaining the optimal global solution.
机译:提出了一种基于Takagi-Sugeno(TS)模糊规则的自适应混合规则网络(AHRN),以解决混沌系统的预测问题。该模型会自动调整其结构,并动态建立规则集(除静态以外)以适应学习新样本的需求。针对学习过程,提出了一种基于意见领袖的量子行为粒子群算法(OLB-QPSO)。该算法使用了根据AHRN生成的合成粒子,并根据社交沟通法则强调了适应度最高的合成粒子的重要性。为了提高找到最佳全局解的机会,组成粒子的运动受作为内部因素的子粒子和作为外部因素的群的影响。进行了三个混沌时间序列实验,以验证该方法的有效性。结果表明,使用带有组成粒子的OLB-QPSO的AHRN可以有效地提供适当的规则以在宽广的空间中搜索解,并显着提高获得最佳全局解的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号