首页> 外文期刊>Fuzzy sets and systems >Fuzzy cognitive network-based maximum power point tracking using a self-tuned adaptive gain scheduled fuzzy proportional integral derivative controller and improved artificial neural network-based particle swarm optimization
【24h】

Fuzzy cognitive network-based maximum power point tracking using a self-tuned adaptive gain scheduled fuzzy proportional integral derivative controller and improved artificial neural network-based particle swarm optimization

机译:自适应增益调度的模糊比例积分微分控制器和改进的基于人工神经网络的粒子群算法的基于模糊认知网络的最大功率点跟踪

获取原文
获取原文并翻译 | 示例

摘要

The increased demand for electrical energy has driven the development of renewable energy sources. In particular, the conversion of solar energy into electrical energy using photovoltaic (PV) systems has become popular because of its simplicity and low cost. However, the nonlinear characteristics and power fluctuations due to changes in the temperature and irradiation hinder the maximum utilization of the power with a PV system. Thus, the maximum power point tracking (MPPT) control technique is used to extract the maximum available power from PV arrays. Due to insolation and variations in temperature in a PV system, the conventional MPPT techniques are readily trapped by local maxima to significantly reduce the conversion efficiency. In order to overcome this issue, we developed a novel perturb and observe algorithm based on an adaptive fuzzy PID controller with an improved artificial neural network-based particle swarm optimization method for tracking the maximum power point with high tracking speed as well as maintaining the system's stability. In addition, we used a fuzzy cognitive network to maintain the equilibrium state, which is essential for improving the conversion efficiency. Simulation results and performance evaluations using our proposed method demonstrated its suitability for applications in PV systems. (C) 2019 Elsevier B.V. All rights reserved.
机译:电能需求的增长推动了可再生能源的发展。特别地,由于其简单性和低成本,使用光伏(PV)系统将太阳能转换为电能已变得流行。但是,由于温度和辐照度变化引起的非线性特性和功率波动会阻碍光伏系统最大程度地利用功率。因此,最大功率点跟踪(MPPT)控制技术用于从PV阵列中提取最大可用功率。由于光伏系统中的日晒和温度变化,传统的MPPT技术很容易被局部最大值所困,从而大大降低了转换效率。为了解决这个问题,我们开发了一种基于自适应模糊PID控制器的新颖扰动和观测算法,该算法具有改进的基于人工神经网络的粒子群优化方法,可以以较高的跟踪速度跟踪最大功率点并保持系统的稳定性。此外,我们使用模糊认知网络来维持平衡状态,这对于提高转换效率至关重要。使用我们提出的方法进行的仿真结果和性能评估证明了其在光伏系统中的适用性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号