首页> 外文期刊>Neurocomputing >Learning iterative quantization binary codes for face recognition
【24h】

Learning iterative quantization binary codes for face recognition

机译:学习用于人脸识别的迭代量化二进制代码

获取原文
获取原文并翻译 | 示例

摘要

Binary feature descriptors have been widely used in computer vision field due to their excellent discriminative power and strong robustness, and local binary patterns (LBP) and its variations have proven that they are effective face descriptors. However, the forms of such binary feature descriptors are pre-defined in the hand-crafted way, which requires strong domain knowledge to design them. In this paper, we propose a simple and efficient iterative quantization binary codes (IQBC) feature learning method to learn a discriminative binary face descriptor in the data-driven way. Firstly, similar to traditional LBP method, we extract patch-wise pixel difference vectors (PDVs) by computing and concatenating the difference between center patch and its neighboring patches. Then, inspired by multi-class spectral clustering and the orthogonal Procrustes problem, which both are widely used in image retrieval field, we learn an optimized rotation to minimize the quantization error of mapping data to the vertices of a zero-centered binary hypercube by using iterative quantization scheme. In other words, we learn a feature mapping to project these pixel difference vectors into low-dimensional binary vectors. And our IQBC can be used with unsupervised data embedding method such as principle component analysis (PCA) and supervised data embedding method such as canonical correlation analysis (CCA), namely IQBC-PCA and IQBC-CCA. Lastly, we cluster and pool these projected binary codes into a histogram-based feature that describes the co-occurrence of binary codes. And we consider the histogram-based feature as our final feature representation for each face image. We investigate the performance of our IQBC-PCA and IQBC-CCA on FERET, CAS-PEAL-R1, LFW and PaSC databases. Extensive experimental results demonstrate that our IQBC descriptor outperforms other state-of-the-art face descriptors. (C) 2016 Elsevier B.V. All rights reserved.
机译:二进制特征描述符具有出色的判别能力和强大的鲁棒性,已在计算机视觉领域得到了广泛应用,而局部二进制模式(LBP)及其变体已证明它们是有效的面部描述符。但是,此类二进制特征描述符的形式是通过手工方式预先定义的,这需要强大的领域知识来设计它们。在本文中,我们提出了一种简单有效的迭代量化二进制代码(IQBC)特征学习方法,以数据驱动的方式学习判别性二进制面部描述符。首先,类似于传统的LBP方法,我们通过计算和级联中心补丁与其相邻补丁之间的差异来提取逐块像素差异向量(PDV)。然后,受广泛应用于图像检索领域的多类谱聚类和正交Procrustes问题的启发,我们学习了一种优化的旋转算法,以通过使用来最大程度地减少将数据映射到零中心二进制超立方体的顶点的量化误差。迭代量化方案。换句话说,我们学习了一个特征映射,将这些像素差向量投影到低维二进制向量中。而且我们的IQBC可以与主成分分析(PCA)等无监督数据嵌入方法以及经典相关分析(CCA)等有监督的数据嵌入方法一起使用,即IQBC-PCA和IQBC-CCA。最后,我们将这些投影的二进制代码聚类并汇集到一个基于直方图的功能中,该功能描述了二进制代码的同时出现。并且我们将基于直方图的特征视为每个人脸图像的最终特征表示。我们在FERET,CAS-PEAL-R1,LFW和PaSC数据库上调查了IQBC-PCA和IQBC-CCA的性能。大量的实验结果表明,我们的IQBC描述符优于其他最新的面部描述符。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第19期|629-642|共14页
  • 作者

    Tian Lei; Fan Chunxiao; Ming Yue;

  • 作者单位

    Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing Key Lab Work Safety Intelligent Monitorin, 10 Xitucheng Rd, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing Key Lab Work Safety Intelligent Monitorin, 10 Xitucheng Rd, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing Key Lab Work Safety Intelligent Monitorin, 10 Xitucheng Rd, Beijing 100876, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Iterative quantization; Feature learning; Binary coding; Local descriptor; Face recognition; Face verification;

    机译:迭代量化;特征学习;二进制编码;局部描述符;人脸识别;人脸验证;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号