首页> 外文期刊>Signal processing >Weakly supervised codebook learning by iterative label propagation with graph quantization
【24h】

Weakly supervised codebook learning by iterative label propagation with graph quantization

机译:通过图形量化的迭代标签传播进行弱监督的码本学习

获取原文
获取原文并翻译 | 示例

摘要

Visual codebook serves as a fundamental component in many state-of-the-art visual search and object recognition systems. While most existing codebooks are built based solely on unsupervised patch quantization, there are few works exploited image labels to supervise its construction. The key challenge lies in the following: image labels are global, but patch supervision should be local. Such imbalanced supervision is beyond the scope of most existing supervised codebooks [9,10,12-15,29]. In this paper, we propose a weakly supervised codebook learning framework, which integrates image labels to supervise codebook building with two steps: the Label Propagation step propagates image labels into local patches by multiple instance learning and instance selection [20,21 ]. The Graph Quantization step integrates patch labels to build codebook using Mean Shift. Both steps are co-optimized in an Expectation Maximization framework: the E-phase selects the best patches that minimize the semantic distortions in quantization to propagate image labels: while the M-phase groups similar patches with related labels (modeled by WordNet [18]), which minimizes the visual distortions in quantization. In quantitative experiments, our codebook outperforms state-of-the-art unsupervised and supervised codebooks [1,10,11,25,29] using benchmark datasets.
机译:视觉密码本是许多先进的视觉搜索和对象识别系统的基本组成部分。尽管大多数现有密码本仅基于无监督的补丁量化构建,但很少有作品利用图像标签来监督其构建。关键挑战在于以下方面:图像标签是全局的,但补丁程序监视应在本地。这种不平衡的监督超出了大多数现有的监督代码本的范围[9,10,12-15,29]。在本文中,我们提出了一个弱监督的码本学习框架,该框架通过两个步骤将图像标签集成到监督码本的构建中:标签传播步骤通过多实例学习和实例选择将图像标签传播到局部补丁中[20,21]。 “图量化”步骤使用“均值移位”将补丁标签集成到代码簿中。这两个步骤均在“期望最大化”框架中共同优化:E期选择最佳的补丁,以最小化量化中的语义失真以传播图像标签:而M阶段将相似的补丁与相关标签分组(由WordNet建模[18] ),可最大程度减少量化中的视觉失真。在定量实验中,我们的代码簿使用基准数据集的性能优于最新的无监督和受监督的代码簿[1,10,11,25,29]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号