首页> 外文学位 >Iterative decoding of LDPC and GLDPC codes over a binary symmetric channel.
【24h】

Iterative decoding of LDPC and GLDPC codes over a binary symmetric channel.

机译:在二进制对称信道上对LDPC和GLDPC码进行迭代解码。

获取原文
获取原文并翻译 | 示例

摘要

For decades since Claude Shannon published his landmark paper [1] and introduced information theory into electrical engineering, scientists have been on a quest to find a coding scheme that would approach the theoretical limit imposed by a communication channel. Designs of good coding schemes have been focused primarily on finding codes that can be decoded with optimal and feasible decoding algorithms. This approach, which was widely accepted by coding theorists, was revised with the introduction of turbo codes and low-density parity-check (LDPC) codes. These two novel approaches were proved to approach the infamous channel capacity using a suboptimum iterative decoding. Consequently, suboptimum iterative decoding techniques have been receiving more attention. Most of the work on iterative decoding of LDPC codes has been dedicated to LDPC codes and their performance on the AWGN channel. On the other hand iterative decoding of LDPC codes on the binary symmetric channel (BSC) was somewhat neglected. With the ever increasing transmission rates in modern optical communications, which are modelled with BSC, there is a need for a very fast and very powerful decoder that will support it.; This research investigates iterative decoding of LDPC and generalized LDPC (GLDPC) codes on BSC. For the decoding of LDPC codes, a new bit flipping (BF) algorithm named the probabilistic bit flipping algorithm was proposed. Convergence of the algorithm is investigated using a standard assumption of cycle free code that enables derivation of recursive equations. The analysis showed that the proposed algorithm improves the threshold over the existing algorithms for some classes of LDPC codes. The algorithm is also analyzed in the presence of cycles in the associated codegraph and proved to be more resilient than existing algorithms. In addition, the proposed algorithm was proved to achieve considerable gain in decoding time in the waterfall part of the performance curve. A new GLDPC coding scheme was proposed that utilizes Reed-Solomon (RS) and Bose-Chaudhuri-Hochquenghem (BCH) codes as component codes. An iterative algorithm is proposed and analyzed in a manner similar to that for LDPC codes. The convergence analysis showed that codes approach the channel capacity within 0.4dB for very high rates. A finite length analysis of proposed GLDPC codes over Q-ary erasure channel (QEC) was conducted. The analysis recognized codegraph structures that determined the performance of the code so that the average bit and block error probabilities over the ensemble of GLDPC codes could be obtained. Finally, the finite length analysis results were extended to BSC as a very tight lower bound of the expected performance over the ensemble.
机译:自克劳德·香农(Claude Shannon)发表具有里程碑意义的论文[1]并将信息论引入电气工程数十年来,科学家一直在寻找一种接近通信信道所施加的理论极限的编码方案。好的编码方案的设计主要集中在寻找可以使用最佳可行解码算法进行解码的代码。此方法已被编码理论家广泛接受,并通过引入Turbo码和低密度奇偶校验(LDPC)码进行了修订。事实证明,这两种新颖的方法都可以使用次最佳迭代解码来处理臭名昭著的信道容量。因此,次优迭代解码技术已受到更多关注。 LDPC码迭代解码的大部分工作都致力于LDPC码及其在AWGN信道上的性能。另一方面,在二进制对称信道(BSC)上对LDPC码的迭代解码被忽略了。随着以BSC为模型的现代光通信中传输速率的不断提高,需要一种非常快速且功能强大的解码器来支持它。这项研究调查LDPC和BSC上的广义LDPC(GLDPC)码的迭代解码。为了对LDPC码进行解码,提出了一种新的称为概率翻转的BF算法。使用无循环代码的标准假设来研究算法的收敛性,该标准假设可以推导递归方程。分析表明,对于某些类型的LDPC码,该算法相对于现有算法提高了阈值。还在相关码图中存在循环的情况下对该算法进行了分析,证明该算法比现有算法更具弹性。此外,该算法在性能曲线的瀑布部分被证明在解码时间上获得了可观的收益。提出了一种新的GLDPC编码方案,该方案利用里德-所罗门(RS)和Bose-Chaudhuri-Hochquenghemhem(BCH)码作为分量码。提出了一种迭代算法,并以与LDPC码类似的方式进行了分析。收敛分析表明,对于非常高的速率,代码接近0.4dB的信道容量。在Q元擦除信道(QEC)上对提议的GLDPC码进行了有限长度分析。分析识别的代码图结构确定了代码的性能,因此可以获得GLDPC代码整体上的平均比特和块错误概率。最后,有限长度分析结果被扩展到BSC,作为整个组合预期性能的非常严格的下限。

著录项

  • 作者

    Miladinovic, Nenad.;

  • 作者单位

    University of Hawai'i at Manoa.;

  • 授予单位 University of Hawai'i at Manoa.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号