首页> 外文期刊>Neurocomputing >Pedestrian identification based on fusion of multiple features and multiple classifiers
【24h】

Pedestrian identification based on fusion of multiple features and multiple classifiers

机译:基于多个特征和多个分类器融合的行人识别

获取原文
获取原文并翻译 | 示例

摘要

Finding a specific person from videos in surveillance systems is a challenging task. In the videos, different people cannot be the same in a whole body appearance. Based on this fact, this paper has proposed new methods based on fusion of textures, angle histograms and color moments to find a specific person. The human visual system can discriminate different objects quickly and efficiently. Inspired by on-center and off-center receptive fields in the visual system, a network model based on spiking neurons is proposed to extract texture features, and it has behaviors similar to Gabor filters. According to human body proportion, a person image is divided into three parts: head, torso and leg. Texture features of three parts are extracted by means of this network. Back propagation neural network, multi-class SVM and KNN are used as classifiers. For improving recognition rate, different fusion methods have been studied such as the fusion of texture features and other features in three body parts, and decision fusion using voting mechanism, probability combination etc. The experimental results for different methods are provided and the best fusion method is proposed. The technology of Compute Unified Device Architecture is applied in the experiments, which greatly reduces the running time for extraction of texture features. (C) 2015 Elsevier B.V. All rights reserved.
机译:从监视系统中的视频中找到特定人员是一项艰巨的任务。在视频中,不同的人在整体外观上不能相同。基于这一事实,本文提出了一种基于纹理,角度直方图和色矩融合的新方法来找到特定的人。人类视觉系统可以快速有效地区分不同的物体。受视觉系统中中心和偏心感受野的启发,提出了一种基于尖峰神经元的网络模型来提取纹理特征,并且其行为类似于Gabor滤波器。根据人体比例,一个人的形象分为三个部分:头部,躯干和腿。通过该网络提取三个部分的纹理特征。反向传播神经网络,多类SVM和KNN用作分类器。为了提高识别率,研究了不同的融合方法,例如三个身体部位的纹理特征和其他特征的融合,以及使用投票机制,概率组合等的决策融合。提供了不同方法的实验结果,并提出了最佳融合方法被提议。实验中采用了Compute Unified Device Architecture技术,大大减少了提取纹理特征的运行时间。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第5期|151-159|共9页
  • 作者单位

    Fujian Normal Univ, Coll Photon & Elect Engn, Minist Educ, Key Lab Optoelect Sci & Technol Med, Fuzhou 350007, Peoples R China|Fujian Univ Technol, Coll Informat Sci & Engn, Fuzhou 350007, Peoples R China;

    Fujian Normal Univ, Coll Photon & Elect Engn, Minist Educ, Key Lab Optoelect Sci & Technol Med, Fuzhou 350007, Peoples R China;

    Fujian Normal Univ, Coll Photon & Elect Engn, Minist Educ, Key Lab Optoelect Sci & Technol Med, Fuzhou 350007, Peoples R China;

    Fujian Normal Univ, Coll Photon & Elect Engn, Minist Educ, Key Lab Optoelect Sci & Technol Med, Fuzhou 350007, Peoples R China;

    Fujian Normal Univ, Coll Photon & Elect Engn, Minist Educ, Key Lab Optoelect Sci & Technol Med, Fuzhou 350007, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Texture features; Angle histograms; Color moments; Gabor filters; Feature fusion; Spiking neural networks;

    机译:纹理特征;角度直方图;色矩;Gabor滤波器;特征融合;尖峰神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号