首页> 外文期刊>Neurocomputing >A regularized least square based discriminative projections for feature extraction
【24h】

A regularized least square based discriminative projections for feature extraction

机译:基于正则化最小二乘的判别投影用于特征提取

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a regularized least square based discriminative projections (RLSDP) method for feature extraction. First, we show that both sparse representation based classifier (SRC) and collaborative representation based classification (CRC) are regularized least square in nature. Second, a regularized least square based graph embedding framework (RLSGE) is constructed. Third, a RLSGE based feature extraction method is given, named regularized least square based discriminant projections (RLSDP). In RLSDP, the within-class compactness information is characterized by the reconstruction residual from the same class, which is consistent with the idea of reconstruction; the between-class separability information is characterized by the between-class scatter matrix like Fisher LDA. RLSDP is much faster than SPP since RLSDP adopts the 12 norm constraint while SPP adopts the L1 norm constraint. The experimental results on AR face database, FERET face database, and the PolyU FRP database demonstrate that RLSDP works well in feature extraction and has a great recognition performance. (C) 2015 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种基于正则化最小二乘的判别投影(RLSDP)方法进行特征提取。首先,我们证明基于稀疏表示的分类器(SRC)和基于协作表示的分类(CRC)本质上都是正规化的最小二乘。其次,构造一个基于最小二乘的正则化图形嵌入框架(RLSGE)。第三,给出了一种基于RLSGE的特征提取方法,称为正则化最小二乘判别投影(RLSDP)。在RLSDP中,类内紧致度信息的特征是来自同一类的重构残差,这与重构的思想是一致的。类间可分离性信息的特征在于类间散布矩阵,例如Fisher LDA。 RLSDP比SPP快得多,因为RLSDP采用12范数约束,而SPP采用L1范数约束。在AR人脸数据库,FERET人脸数据库和PolyU FRP数据库上的实验结果表明,RLSDP在特征提取中表现良好,具有很好的识别性能。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第29期|198-205|共8页
  • 作者单位

    Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China|Southeast Univ, Key Lab Measurement & Control Complex Syst Engn, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China|Southeast Univ, Key Lab Child Dev & Learning Sci, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China;

    Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China|Southeast Univ, Key Lab Measurement & Control Complex Syst Engn, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China;

    Southeast Univ, Key Lab Child Dev & Learning Sci, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Regularized least square; Sparse representation; Collaborative representation; Feature extraction;

    机译:正则化最小二乘;稀疏表示;协作表示;特征提取;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号