首页> 外文期刊>Neurocomputing >Finite-time stochastic boundedness of discrete-time Markovian jump neural networks with boundary transition probabilities and randomly varying nonlinearities
【24h】

Finite-time stochastic boundedness of discrete-time Markovian jump neural networks with boundary transition probabilities and randomly varying nonlinearities

机译:具有边界转移概率和随机变化非线性的离散时间马尔可夫跳跃神经网络的有限时间随机有界性

获取原文
获取原文并翻译 | 示例

摘要

This work studies the problem of finite-time stochastic boundedness of discrete-time Markovian jump neural networks with boundary transition probabilities and randomly varying nonlinearities. The partly unknown and uncertain transition probabilities (TPs) are included in the paper, and more general nonlinearities are introduced with both upper and lower bounds due to the nature of its probability information. By employing the free-weighting matrix technique, finite-time stability theory and boundary incomplete TPs, the solvability sufficient conditions of finite-time stochastic boundedness are given. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.
机译:这项工作研究了具有边界转移概率和随机变化的非线性的离散时间马尔可夫跳跃神经网络的有限时间随机有界性问题。本文包括部分未知和不确定的转移概率(TPs),并且由于其概率信息的性质,引入了具有上限和下限的更一般的非线性。利用自由加权矩阵技术,有限时间稳定性理论和边界不完全TPs,给出了有限时间随机有界性的可解性充分条件。最后,通过数值例子说明了所提方法的有效性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号