首页> 外文期刊>Neurocomputing >Less conservative stability condition for uncertain discrete-time recurrent neural networks with time-varying delays
【24h】

Less conservative stability condition for uncertain discrete-time recurrent neural networks with time-varying delays

机译:具有时变时滞的不确定离散时间递归神经网络的保守度较小的稳定性条件

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the stability analysis problem for uncertain stochastic discrete-time recurrent neural networks with time-varying delay. By using linear matrix inequality method and discrete Jensen inequality, a new Lyapunov-Krasovskii function is established to derive sufficient condition for globally asymptotical stability in mean square of the recurrent neural networks with stochastic disturbance. As an extension, we further consider the stability analysis problem for the same class of neural networks but with uncertainty. It is shown that the newly obtained result is less conservative than the existing ones when the described system is without disturbance and uncertainty. Meanwhile, the computational complexity is reduced since less variable is involved. Two numerical examples are presented to illustrate the effectiveness and the benefits of the proposed method. (C) 2015 Elsevier B.V. All rights reserved.
机译:具有时变时滞的不确定随机离散时间递归神经网络的稳定性分析问题。通过使用线性矩阵不等式方法和离散Jensen不等式,建立了一个新的Lyapunov-Krasovskii函数,为具有随机扰动的递归神经网络的均方根导出全局渐近稳定性的充分条件。作为扩展,我们进一步考虑了同一类神经网络但具有不确定性的稳定性分析问题。结果表明,当所描述的系统没有干扰和不确定性时,新获得的结果不如现有结果保守。同时,由于涉及较少的变量,因此降低了计算复杂度。给出两个数值例子,以说明所提方法的有效性和益处。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号