首页> 外文期刊>Neurocomputing >New robust stability condition for discrete-time recurrent neural networks with time-varying delays and nonlinear perturbations
【24h】

New robust stability condition for discrete-time recurrent neural networks with time-varying delays and nonlinear perturbations

机译:具有时变时滞和非线性摄动的离散时间递归神经网络的新鲁棒稳定性条件

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the robust delay-dependent stability problem is investigated for discrete-time recurrent neural networks (DRNNs) with time-varying delays and nonlinear perturbations. A novel summation inequality is proposed, which takes information on the double summation of system state into consideration and further extends the discrete Wirtinger-based inequality. By utilizing technique of the novel inequality and Lyapunov Krasovskii functionals, a sufficient condition on robust stability of DRNNs with time-varying delays and nonlinear perturbations is obtained in terms of linear matrix inequality. The numerical example is included to show that the proposed method is effective and provides less conservative results.
机译:本文研究了具有时变时滞和非线性扰动的离散时间递归神经网络(DRNN)的鲁棒时滞相关稳定性问题。提出了一种新颖的求和不等式,该求和不等式考虑了关于系统状态的两次求和的信息,并进一步扩展了基于维特林格的离散不等式。通过利用新的不等式和Lyapunov Krasovskii泛函,利用线性矩阵不等式获得了具有时变时滞和非线性摄动的DRNN鲁棒稳定性的充分条件。数值算例表明该方法是有效的,保守性较差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号