首页> 外文期刊>Neurocomputing >Adaptive fuzzy pattern classification for the online detection of driver lane change intention
【24h】

Adaptive fuzzy pattern classification for the online detection of driver lane change intention

机译:在线检测驾驶员车道变更意图的自适应模糊模式分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper we introduce a new fuzzy system using adaptive fuzzy pattern classification (AFPC) for data based online evolvement. The fuzzy pattern concept represents an efficient tool for handling uncertainty in multi-dimensional data streams and combines powerful performance, flexibility and meaningful interpretability within one consistent framework. We outline AFPC for non-linear, multi-dimensional transition processes, namely, for the identification of lane change intention in car driving. While lane changes are rare, they are highly safety-relevant transition processes, showing high fuzziness and large individual and inter-individual variations (e.g., in lane change duration). The method employs a combined knowledge and data-based approach, and the underlying fuzzy potential membership function concept models expert knowledge, closely mirroring human cognition. The design of AFPC comprises (I) an initial training phase (off-line and supervised), which generates a meaningful start-classifier, (II) an online application phase, and finally (III) an evolvement phase (online and unsupervised). Here we consider parametric and structural adaptations and discuss prospects and future challenges. Furthermore, we present specific modeling results for such online data from a real driving study. Next-generation advanced driver assistance systems, as well as autonomously driven vehicles need to evolve, in terms of parameters and structure, based on online real-time data. AFPC presents an efficient tool for application in this area and others (e.g., medicine). (C) 2017 Elsevier B.V. All rights reserved.
机译:在本文中,我们介绍了一种新的基于自适应模糊模式分类(AFPC)的模糊系统,用于基于数据的在线演化。模糊模式概念代表了一种用于处理多维数据流中不确定性的有效工具,并且在一个一致的框架内结合了强大的性能,灵活性和有意义的可解释性。我们概述了AFPC的非线性,多维过渡过程,即在汽车驾驶中识别车道变更意图的过程。尽管变道很少见,但它们是与安全性高度相关的过渡过程,显示出高度的模糊性以及个体和个体之间的较大差异(例如变道持续时间)。该方法采用了基于知识和数据的组合方法,并且潜在的模糊潜在隶属函数概念模型对专家知识进行了建模,与人类的认知密切相关。 AFPC的设计包括(I)初始培训阶段(离线和受监督),该阶段会生成有意义的开始分类器;(II)在线申请阶段,最后(III)演化阶段(在线和无监督)。在这里,我们考虑参数和结构上的调整,并讨论前景和未来挑战。此外,我们提供了来自实际驾驶研究的此类在线数据的特定建模结果。下一代高级驾驶员辅助系统以及自动驾驶汽车需要根据在线实时数据在参数和结构方面进行改进。 AFPC提供了一种在此领域和其他领域(例如医学)中应用的有效工具。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号