首页> 外文期刊>Neurocomputing >Leader-follower optimal coordination tracking control for multi-agent systems with unknown internal states
【24h】

Leader-follower optimal coordination tracking control for multi-agent systems with unknown internal states

机译:内部状态未知的多主体系统的领导者跟随者最优协调跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates optimal coordination tracking control for nonlinear multi-agent systems (NMASs) with unknown internal states by using an adaptive dynamic programing (ADP) method. Actually, the optimal coordination control for MASs depends on the solutions to the coupled Hamilton-Jacobi-Bellman (HJB) equations which are almost impossible to be solved analytically. And what's worse is that the accurate system models are either infeasible or difficult to obtain in practical applications. To surmount these deficiencies, a neural network (NN) based observer is designed for each agent to reconstruct its internal states by utilizing the measurable input-output data rather than accurate system models. Based on the observed states and Bellman optimality principle, we derive optimal coordination control policies from the coupled HJB equations. In order to implement the proposed ADP method, a critic network framework is proposed for each agent to approximate its value function and help calculate the optimal coordination control policy. Then we prove the local coordination tracking errors and weight estimation errors are uniformly ultimately bounded (UUB) while the approximated control policies converge to their target values. Finally, two simulation examples are given to show the effectiveness of the proposed ADP method. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文采用自适应动态规划(ADP)方法研究了内部状态未知的非线性多主体系统(NMAS)的最优协调跟踪控制。实际上,MAS的最佳协调控制取决于耦合的Hamilton-Jacobi-Bellman(HJB)方程的解,这几乎是无法解析解决的。更糟糕的是,准确的系统模型在实际应用中不可行或难以获得。为了克服这些不足,为每个代理设计了基于神经网络(NN)的观察器,以利用可测量的输入输出数据而不是精确的系统模型来重构其内部状态。基于观察到的状态和Bellman最优性原理,我们从耦合的HJB方程中导出了最优协调控制策略。为了实施所提出的ADP方法,提出了一种批评者网络框架,用于使每个代理近似其价值函数并帮助计算最佳协调控制策略。然后,我们证明了局部协调跟踪误差和权重估计误差均匀地最终有界(UUB),同时近似的控制策略收敛到它们的目标值。最后,给出了两个仿真例子,说明了所提方法的有效性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第2期|171-181|共11页
  • 作者单位

    Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Dept Aerosp Engn, Wuhan 430074, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Dept Aerosp Engn, Wuhan 430074, Peoples R China|Huazhong Univ Sci & Technol, Digital Mfg Equipment & Technol Natl Key Lab, Wuhan 430074, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-agent systems; Optimal coordination control; Adaptive dynamic programming; Tracking control; Neural network-based observer;

    机译:多主体系统;最优协调控制;自适应动态规划;跟踪控制;基于神经网络的观察器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号