首页> 外文期刊>Neurocomputing >Verification and predicting temperature and humidity in a solar greenhouse based on convex bidirectional extreme learning machine algorithm
【24h】

Verification and predicting temperature and humidity in a solar greenhouse based on convex bidirectional extreme learning machine algorithm

机译:基于凸型双向极限学习机算法的日光温室温度和湿度验证与预测

获取原文
获取原文并翻译 | 示例

摘要

Predictions regarding the solar greenhouse temperature and humidity are important because they play a critical role in greenhouse cultivation. On account of this, it is important to set up a predictive model of temperature and humidity that would precisely predict the temperature and humidity, reducing potential financial losses. This paper presents a novel temperature and humidity prediction model based on convex bidirectional extreme learning machine (CB-ELM). Simulation results show that the convergence rate of the bidirectional extreme learning machine (B-ELM) can further be improved while retaining the same simplicity, by simply recalculating the output weights of the existing nodes based on a convex optimization method when a new hidden node is randomly added. The performance of the CB-ELM model is compared with other modeling approaches by applying it to predict solar greenhouse temperature and humidity. The experiment results show that the CB-ELM model predictions are more accurate than those of the B-ELM, Back Propagation Neural Network (BPNN), Support Vector Machine (SVM), and Radial Basis Function (RBF). Therefore, it can be considered as a suitable and effective method for predicting the solar greenhouse temperature and humidity. (C) 2017 Elsevier B.V. All rights reserved.
机译:关于日光温室温度和湿度的预测很重要,因为它们在温室栽培中起着至关重要的作用。因此,建立温度和湿度的预测模型非常重要,该模型可以精确地预测温度和湿度,从而减少潜在的财务损失。本文提出了一种基于凸双向极限学习机(CB-ELM)的新型温湿度预测模型。仿真结果表明,当使用新的隐藏节点作为节点时,通过基于凸优化方法简单地重新计算现有节点的输出权重,可以在保持相同简单性的同时进一步提高双向极限学习机(B-ELM)的收敛速度。随机添加。通过将CB-ELM模型用于预测日光温室的温度和湿度,将其性能与其他建模方法进行了比较。实验结果表明,CB-ELM模型的预测比B-ELM,反向传播神经网络(BPNN),支持向量机(SVM)和径向基函数(RBF)的预测更为准确。因此,可以将其视为预测日光温室温度和湿度的合适且有效的方法。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号