首页> 外文期刊>Neurocomputing >H-infinity control with constrained input for completely unknown nonlinear systems using data-driven reinforcement learning method
【24h】

H-infinity control with constrained input for completely unknown nonlinear systems using data-driven reinforcement learning method

机译:使用数据驱动的强化学习方法对完全未知的非线性系统进行带约束输入的H无限控制

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the H-infinity control problem for nonlinear systems with completely unknown dynamics and constrained control input by utilizing a novel data-driven reinforcement learning method. It is known that nonlinear H-infinity control problem relies on the solution of Hamilton-Jacobi-Isaacs (HJI) equation, which is essentially a nonlinear partial differential equation and generally impossible to be solved analytically. In order to overcome this difficulty, firstly, we propose a model-based simultaneoui policy update algorithm to learn the solution of HJI equation iteratively and provide its convergence proof. Then, based on this model-based method, we develop a data-driven model-free algorithm, which only requires the real system sampling data generated by arbitrary different control inputs and external disturbances instead of accurate system models, and prove that these two algorithms are equivalent. To implement this model-free algorithm, three neural networks (NNs) are employed to approximate the iterative performance index function, control policy and disturbance policy, respectively, and the least-square approach is used to minimize the NN approximation residual errors. Finally, the proposed scheme is tested on the rotational/translational actuator nonlinear system.
机译:本文利用一种新颖的数据驱动强化学习方法,研究了动力学完全未知且控制输入受限的非线性系统的H无限控制问题。众所周知,非线性H-无穷大控制问题依赖于Hamilton-Jacobi-Isaacs(HJI)方程的解,该方程本质上是非线性偏微分方程,通常无法解析求解。为了克服这一困难,首先,提出一种基于模型的同时策略更新算法,以迭代地学习HJI方程的解,并提供其收敛性证明。然后,基于这种基于模型的方法,我们开发了一种数据驱动的无模型算法,该算法仅需要由任意不同的控制输入和外部干扰生成的实际系统采样数据,而不是精确的系统模型,并证明了这两种算法是等效的。为了实现这种无模型算法,分别使用三个神经网络来逼近迭代性能指标函数,控制策略和扰动策略,并使用最小二乘法来最小化神经网络逼近残差。最后,在旋转/平移执行器非线性系统上对提出的方案进行了测试。

著录项

  • 来源
    《Neurocomputing》 |2017年第may10期|226-234|共9页
  • 作者单位

    Northeastern Univ, Coll Informat Sci & Engn, Box 134, Shenyang 110819, Peoples R China;

    Northeastern Univ, Coll Informat Sci & Engn, Box 134, Shenyang 110819, Peoples R China;

    Northeastern Univ, Coll Informat Sci & Engn, Box 134, Shenyang 110819, Peoples R China;

    Northeastern Univ, Coll Informat Sci & Engn, Box 134, Shenyang 110819, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Reinforcement learning; Adaptive dynamic programming; Data-driven; Neural networks;

    机译:强化学习;自适应动态规划;数据驱动;神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号