首页> 外文期刊>Neurocomputing >Intelligent nonconvex compressive sensing using prior information for image reconstruction by sparse representation
【24h】

Intelligent nonconvex compressive sensing using prior information for image reconstruction by sparse representation

机译:使用先验信息进行稀疏表示的图像重建智能非凸压缩感知

获取原文
获取原文并翻译 | 示例

摘要

Image reconstruction by sparse representation, which is based on the fact that natural images are intrinsically sparse under some over-completed dictionaries, has shown promising results in many applications. However, due to the down-sampled measurements, the results of image reconstruction by sparse representation are sometimes not accurate enough. In this paper, we propose a novel intelligent nonconvex compressive sensing (INCS) algorithm using prior information for image reconstruction by sparse representation. First of all, the over-completed dictionary of Ridgelet is used to introduce the sparse level for each image block. Then we use the nonlocal self-similarity property and joint sparsity to obtain the basic prior information to guide the reconstruction, which contributes a lot to improving the reconstruction accuracy and reducing the computational complexity. To enhance the guidance accuracy of prior information, the property that natural image blocks spatially nearby share the similar structures is exploited to extract more information to enrich the basic prior information. Under the guidance of prior information, the intelligent optimization algorithm, which performs superiorly in solving combinatorial optimization problems and global searching, is utilized to solve the nonconvex l(0) minimization problem essentially. By means of the prior information and the intelligent searching strategy, the proposed INCS can not only improve the reconstruction accuracy signifidantly but also reduce the computational complexity to accelerate the reconstruction speed. Extensive experiments on five natural images are conducted to verify the performance of our proposed method INCS. The experimental results demonstrate that INCS outperforms the state-of-the-art algorithms in terms of PSNR, SSIM and visual quality.
机译:通过稀疏表示进行图像重建是基于这样的事实:在某些完全完成的词典下,自然图像本质上是稀疏的,在许多应用中都显示出令人鼓舞的结果。然而,由于降采样的测量,通过稀疏表示进行图像重建的结果有时不够准确。在本文中,我们提出了一种基于先验信息的新型智能非凸压缩感知(INCS)算法,用于稀疏表示的图像重建。首先,使用超完备的Ridgelet字典为每个图像块引入稀疏级别。然后利用非局部自相似性和联合稀疏性获得基本的先验信息来指导重构,这对提高重构精度和降低计算复杂度做出了很大贡献。为了提高先验信息的指导准确性,利用空间上附近的自然图像块共享相似结构的性质来提取更多信息以丰富基本先验信息。在先验信息的指导下,利用智能优化算法在解决组合优化问题和全局搜索方面表现优异,从根本上解决了非凸l(0)最小化问题。借助先验信息和智能搜索策略,提出的INCS不仅可以显着提高重建精度,而且可以降低计算复杂度,加快重建速度。对五个自然图像进行了广泛的实验,以验证我们提出的方法INCS的性能。实验结果表明,在PSNR,SSIM和视觉质量方面,INCS优于最新算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号