首页> 外文期刊>Circuits, systems, and signal processing >Image Block Compressive Sensing Reconstruction via Group-Based Sparse Representation and Nonlocal Total Variation
【24h】

Image Block Compressive Sensing Reconstruction via Group-Based Sparse Representation and Nonlocal Total Variation

机译:基于组的稀疏表示和非局部总变化量的图像块压缩感知重构

获取原文
获取原文并翻译 | 示例

摘要

Compressive sensing (CS) has recently drawn considerable attentions in signal and image processing communities as a joint sampling and compression approach. Generally, the image CS reconstruction can be formulated as an optimization problem with a properly chosen regularization function based on image priors. In this paper, we propose an efficient image block compressive sensing (BCS) reconstruction method, which combine the best of group-based sparse representation (GSR) model and nonlocal total variation (NLTV) model to regularize the solution space of the image CS recovery optimization problem. Specifically, the GSR model is utilized to simultaneously enforce the intrinsic local sparsity and the nonlocal self-similarity of natural images, while the NLTV model is explored to characterize the smoothness of natural images on a larger scale than the classical total variation (TV) model. To efficiently solve the proposed joint regularized optimization problem, an algorithm based on the split Bregman iteration is developed. The experimental results demonstrate that the proposed method outperforms current state-of-the-art image BCS reconstruction methods in both objective quality and visual perception.
机译:作为联合采样和压缩方法,压缩感测(CS)最近在信号和图像处理领域引起了广泛关注。通常,可以基于图像先验将图像CS重建公式化为具有适当选择的正则化函数的优化问题。在本文中,我们提出了一种有效的图像块压缩感知(BCS)重建方法,该方法结合了基于组的稀疏表示(GSR)模型和非局部总变化(NLTV)模型的优点,以规范化图像CS恢复的解空间优化问题。具体而言,GSR模型用于同时增强自然图像的固有局部稀疏性和非局部自相似性,而探索NLTV模型以比传统的总变异(TV)模型更大的尺度表征自然图像的平滑度。为了有效解决提出的联合正则优化问题,开发了一种基于分裂Bregman迭代的算法。实验结果表明,该方法在客观质量和视觉感知方面均优于当前最新的图像BCS重建方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号