首页> 外文期刊>Neurocomputing >Zeroing neural-dynamics approach and its robust and rapid solution for parallel robot manipulators against superposition of multiple disturbances
【24h】

Zeroing neural-dynamics approach and its robust and rapid solution for parallel robot manipulators against superposition of multiple disturbances

机译:并联机器人对多种扰动叠加的归零神经动力学方法及其鲁棒快速解决方案

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a zeroing neural-dynamics (ZND) approach as well as its associated model for solving the real-time kinematic control problem of parallel robot manipulators. Unlike existing works relying on the plausibly impractical assumption that neural network models are free of external disturbances, the proposed model features the suppression of multiple disturbances in addition to its nonlinear processing and control. Theoretical analyses prove that the ZND approach and its associated model inherently possess robustness. In addition, by using an appropriate activation function, the rapid convergence performance of the corresponding ZND model is further achieved. Simulation studies and comprehensive comparisons substantiate the effectiveness, robustness and superiority of the proposed ZND approach as well as its associated model for solving the real-time kinematic control problem of parallel robot manipulators against the superposition of multiple disturbances. Moreover, results of extensive tests verify that the processing of the ZND model can be accelerated by using an appropriate activation function. (c) 2017 Elsevier B.V. All rights reserved.
机译:本文提出了一种归零神经动力学(ZND)方法及其相关模型,用于解决并联机器人操纵器的实时运动控制问题。与现有的工作依赖于似乎不切实际的假设(神经网络模型不受外部干扰)不同,所提出的模型除了具有非线性处理和控制功能外,还具有抑制多种干扰的功能。理论分析证明,ZND方法及其相关模型固有地具有鲁棒性。此外,通过使用适当的激活函数,可以进一步实现相应ZND模型的快速收敛性能。仿真研究和综合比较证实了所提出的ZND方法及其解决并行机器人机械手的实时运动控制问题以应对多种干扰叠加的模型的有效性,鲁棒性和优越性。此外,大量测试的结果证明,通过使用适当的激活函数,可以加速ZND模型的处理。 (c)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号