首页> 外文期刊>Neural processing letters >Robust Exponential Stability for Discrete-Time Quaternion-Valued Neural Networks with Time Delays and Parameter Uncertainties
【24h】

Robust Exponential Stability for Discrete-Time Quaternion-Valued Neural Networks with Time Delays and Parameter Uncertainties

机译:具有时间延迟和参数不确定性的离散时间四元数值神经网络的强大指数稳定性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the robust exponential stability for discrete-time quaternion-valued neural networks with time delays and parameter uncertainties is investigated. By means of Lyapunov theorem, linear matrix inequality and contraction mapping theorem, new sufficient conditions are derived to ensure the existence, uniqueness and robust exponential stability of the equilibrium point of the proposed quaternion-valued neural networks. Compared with the existed literatures, the obtained results are less conservative. Finally, simulations are presented to illustrate the effectiveness of the theoretical results.
机译:本文研究了具有时间延迟和参数不确定性的离散时间四元数值神经网络的鲁棒指数稳定性。通过Lyapunov定理,线性矩阵不等式和收缩定位定理,推导出新的充分条件,以确保所提出的四元数值神经网络的平衡点的存在,唯一性和稳健的指数稳定性。与存在的文献相比,所获得的结果较少保守。最后,提出了模拟以说明理论结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号