首页> 外文期刊>Neural, Parallel & Scientific Computations >Optimal Control For Stochastic Linear Quadraticsingular System With Indefinite Control Cost And cross Term Using Neural Networks
【24h】

Optimal Control For Stochastic Linear Quadraticsingular System With Indefinite Control Cost And cross Term Using Neural Networks

机译:具有不确定控制成本和交叉项的随机线性二次奇异系统的神经网络最优控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, optimal control for stochastic linear singular system with indefinite control cost and cross term in the cost functional is obtained using neural networks. The goal is to provide optimal control with reduced calculus effort by comparing the solutions of the matrix Riccati differential equation (MRDE) obtained from well known traditional Runge Kutta (RK) method and nontraditional neural network method. To obtain the optimal control, the solution of MRDE is computed by feed forward neural network (FFNN). Accuracy of the solution of the neural network approach to the problem is qualitatively better. The advantage of the proposed approach is that, once the network is trained, it allows instantaneous evaluation of solution at any desired number of points spending negligible computing time and memory. The computation time of the proposed method is shorter than the traditional RK method. An illustrative numerical example is presented for the proposed method.
机译:利用神经网络,获得了具有不确定控制成本和成本函数中交叉项的随机线性奇异系统的最优控制。目的是通过比较从著名的传统Runge Kutta(RK)方法和非传统神经网络方法获得的矩阵Riccati微分方程(MRDE)的解决方案,以减少微积分的工作量来提供最佳控制。为了获得最佳控制,通过前馈神经网络(FFNN)计算MRDE的解。从本质上讲,神经网络方法解决问题的准确性更高。所提出的方法的优点在于,一旦对网络进行了训练,就可以在任何所需的点数上对解决方案进行即时评估,而计算时间和内存却可以忽略不计。该方法的计算时间比传统的RK方法要短。为提出的方法提供了一个说明性的数值示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号