首页> 外文期刊>Neural, Parallel & Scientific Computations >Exponential Techniques And Implicit Runge-kuttamethods For Singularly-perturbed Volterra integro-differential Equations
【24h】

Exponential Techniques And Implicit Runge-kuttamethods For Singularly-perturbed Volterra integro-differential Equations

机译:奇摄动Volterra积分微分方程的指数技术和隐式Runge-kutta方法

获取原文
获取原文并翻译 | 示例

摘要

Numerical experiments performed with an exponential finite difference method in equally-spaced and piecewise-uniform meshes for both the inner and the outer layers and with an implicit Runge-Kutta-Radau IIA method for the outer layer of singularly-perturbed Volterra integro-differential equations are reported. The exponential finite difference technique is based on piecewise linear approximations and its linear stability has been analyzed. It is shown that the exponential method presented in this paper provides first-order accurate solutions for small values of the perturbation parameter, whereas the same technique in a piecewise-uniform mesh is almost second-order uniformly convergent because it does resolve the inner layer and, most importantly, because the finite difference equations are independent of the perturbation parameter in the inner layer. The implicit Runge-Kutta method for the outer layer yields errors that only depend on the step size if the number of stages is small or the step size is large, but depend on both the small perturbation parameter and the step size, otherwise.
机译:在内层和外层均等间距且分段均匀的网格中使用指数有限差分法进行的数值实验,奇异摄动Volterra积分微分方程的外层采用隐式Runge-Kutta-Radau IIA方法进行了数值实验被报道。指数有限差分技术基于分段线性逼近,并对其线性稳定性进行了分析。结果表明,本文提出的指数方法可为较小的摄动参数值提供一阶精确解,而分段均匀网格中的相同技术几乎可以实现二阶均匀收敛,因为它确实可以解析内层并且,最重要的是,因为有限差分方程独立于内层的摄动参数。外层的隐式Runge-Kutta方法产生的误差仅取决于级数少或步长大的步长,而取决于小扰动参数和步长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号