首页> 外文期刊>IEEE Transactions on Neural Networks >First-order versus second-order single-layer recurrent neural networks
【24h】

First-order versus second-order single-layer recurrent neural networks

机译:一阶与二阶单层递归神经网络

获取原文
获取原文并翻译 | 示例

摘要

We examine the representational capabilities of first-order and second-order single-layer recurrent neural networks (SLRNN's) with hard-limiting neurons. We show that a second-order SLRNN is strictly more powerful than a first-order SLRNN. However, if the first-order SLRNN is augmented with output layers of feedforward neurons, it can implement any finite-state recognizer, but only if state-splitting is employed. When a state is split, it is divided into two equivalent states. The judicious use of state-splitting allows for efficient implementation of finite-state recognizers using augmented first-order SLRNN's.
机译:我们检查具有硬限制神经元的一阶和二阶单层递归神经网络(SLRNN)的表示能力。我们表明,二阶SLRNN严格比一阶SLRNN强大。但是,如果将一阶SLRNN加上前馈神经元的输出层,则它可以实现任何有限状态识别器,但前提是必须采用状态分离。拆分状态时,它将分为两个等效状态。明智地使用状态分割可以使用增强的一阶SLRNN来有效实现有限状态识别器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号