首页> 外文会议>Language and automata theory and applications >A Hierarchical Classification of First-Order Recurrent Neural Networks
【24h】

A Hierarchical Classification of First-Order Recurrent Neural Networks

机译:一阶递归神经网络的层次分类

获取原文
获取原文并翻译 | 示例

摘要

We provide a refined hierarchical classification of first-order recurrent neural networks made up of McCulloch and Pitts cells. The classification is achieved by first proving the equivalence between the expressive powers of such neural networks and Muller automata, and then translating the Wadge classification theory from the automata-theoretic to the neural network context. The obtained hierarchical classification of neural networks consists of a decidable pre-well ordering of width 2 and height ww, and a decidability procedure of this hierarchy is provided. Notably, this classification is shown to be intimately related to the attractive properties of the networks, and hence provides a new refined measurement of the computational power of these networks in terms of their attractive behaviours.
机译:我们提供了由McCulloch和Pitts细胞组成的一阶递归神经网络的精细分类。通过首先证明此类神经网络的表达能力与Muller自动机之间的等价性,然后将Wadge分类理论从自动机理论转换为神经网络环境,来实现分类。获得的神经网络的分层分类由宽度2和高度ww的可确定的预阱顺序组成,并提供了该层次的可确定性过程。值得注意的是,该分类显示出与网络的吸引人的特性密切相关,因此,就这些网络的吸引人的行为而言,提供了一种新的改进的衡量能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号