首页> 外文期刊>IEEE Transactions on Neural Networks >A new class of wavelet networks for nonlinear system identification
【24h】

A new class of wavelet networks for nonlinear system identification

机译:一类用于非线性系统辨识的小波网络

获取原文
获取原文并翻译 | 示例

摘要

A new class of wavelet networks (WNs) is proposed for nonlinear system identification. In the new networks, the model structure for a high-dimensional system is chosen to be a superimposition of a number of functions with fewer variables. By expanding each function using truncated wavelet decompositions, the multivariate nonlinear networks can be converted into linear-in-the-parameter regressions, which can be solved using least-squares type methods. An efficient model term selection approach based upon a forward orthogonal least squares (OLS) algorithm and the error reduction ratio (ERR) is applied to solve the linear-in-the-parameters problem in the present study. The main advantage of the new WN is that it exploits the attractive features of multiscale wavelet decompositions and the capability of traditional neural networks. By adopting the analysis of variance (ANOVA) expansion, WNs can now handle nonlinear identification problems in high dimensions.
机译:提出了一种用于非线性系统辨识的新型小波网络。在新的网络中,高维系统的模型结构被选择为许多具有较少变量的函数的叠加。通过使用截短小波分解扩展每个函数,可以将多元非线性网络转换为参数线性回归,可以使用最小二乘法来求解。本文提出了一种基于前向正交最小二乘(OLS)算法和误差减少率(ERR)的有效模型项选择方法来解决参数线性问题。新的WN的主要优点是,它利用了多尺度小波分解的吸引人的特征以及传统神经网络的功能。通过采用方差分析(ANOVA)展开,WN现在可以处理高维中的非线性识别问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号