首页> 外文期刊>IEEE Transactions on Neural Networks >Active State Estimation for Nonlinear Systems: A Neural Approximation Approach
【24h】

Active State Estimation for Nonlinear Systems: A Neural Approximation Approach

机译:非线性系统的有源状态估计:一种神经近似方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the problem of actively providing an estimate of the state of a stochastic dynamic system over a (possibly long) finite time horizon. The active estimation problem (AEP) is formulated as a stochastic optimal control one, in which the minimization of a suitable uncertainty measure is carried out. Toward this end, the use of the Renyi entropy as an information measure is proposed and motivated. A neural control scheme, based on the application of the extended Ritz method (ERIM) and on the use of a Gaussian sum filter (GSF), is then presented. Simulation results show the effectiveness of the proposed approach.
机译:在本文中,我们考虑了在(可能很长的)有限时间范围内主动提供随机动态系统状态估计的问题。主动估计问题(AEP)被表述为随机最优控制变量,其中对适当的不确定性度量进行最小化。为此,提出并激励了将仁义熵用作信息量度。然后,提出了基于扩展Ritz方法(ERIM)和高斯和滤波器(GSF)的神经控制方案。仿真结果表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号