首页> 外文期刊>IEEE Transactions on Neural Networks >Generalized Hamilton–Jacobi–Bellman Formulation -Based Neural Network Control of Affine Nonlinear Discrete-Time Systems
【24h】

Generalized Hamilton–Jacobi–Bellman Formulation -Based Neural Network Control of Affine Nonlinear Discrete-Time Systems

机译:基于广义Hamilton–Jacobi–Bellman公式的仿射非线性离散系统神经网络控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the use of nonlinear networks towards obtaining nearly optimal solutions to the control of nonlinear discrete-time (DT) systems. The method is based on least squares successive approximation solution of the generalized Hamilton-Jacobi-Bellman (GHJB) equation which appears in optimization problems. Successive approximation using the GHJB has not been applied for nonlinear DT systems. The proposed recursive method solves the GHJB equation in DT on a well-defined region of attraction. The definition of GHJB, pre-Hamiltonian function, HJB equation, and method of updating the control function for the affine nonlinear DT systems under small perturbation assumption are proposed. A neural network (NN) is used to approximate the GHJB solution. It is shown that the result is a closed-loop control based on an NN that has been tuned a priori in offline mode. Numerical examples show that, for the linear DT system, the updated control laws will converge to the optimal control, and for nonlinear DT systems, the updated control laws will converge to the suboptimal control.
机译:在本文中,我们考虑使用非线性网络来获得非线性离散时间(DT)系统控制的最佳解决方案。该方法基于出现在优化问题中的广义Hamilton-Jacobi-Bellman(GHJB)方程的最小二乘逐次逼近解。使用GHJB的逐次逼近尚未应用于非线性DT系统。所提出的递归方法在定义明确的吸引力区域上求解了DT中的GHJB方程。提出了GHJB的定义,前哈密顿函数,HJB方程,以及在小扰动假设下仿射非线性DT系统的控制函数更新方法。神经网络(NN)用于近似GHJB解决方案。结果表明,该结果是基于NN的闭环控制,该NN已在脱机模式下先验调整。数值算例表明,对于线性DT系统,更新后的控制律收敛于最优控制;对于非线性DT系统,更新后的控制律收敛于次优控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号