首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Neural-Adaptive Control of Single-Master–Multiple-Slaves Teleoperation for Coordinated Multiple Mobile Manipulators With Time-Varying Communication Delays and Input Uncertainties
【24h】

Neural-Adaptive Control of Single-Master–Multiple-Slaves Teleoperation for Coordinated Multiple Mobile Manipulators With Time-Varying Communication Delays and Input Uncertainties

机译:具有时变通信时滞和输入不确定性的协调多移动机械手单主从-从站遥操作的神经自适应控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, adaptive neural network control is investigated for single-master–multiple-slaves teleoperation in consideration of time delays and input dead-zone uncertainties for multiple mobile manipulators carrying a common object in a cooperative manner. Firstly, concise dynamics of teleoperation systems consisting of a single master robot, multiple coordinated slave robots, and the object are developed in the task space. To handle asymmetric time-varying delays in communication channels and unknown asymmetric input dead zones, the nonlinear dynamics of the teleoperation system are transformed into two subsystems through feedback linearization: local master or slave dynamics including the unknown input dead zones and delayed dynamics for the purpose of synchronization. Then, a model reference neural network control strategy based on linear matrix inequalities (LMI) and adaptive techniques is proposed. The developed control approach ensures that the defined tracking errors converge to zero whereas the coordination internal force errors remain bounded and can be made arbitrarily small. Throughout this paper, stability analysis is performed via explicit Lyapunov techniques under specific LMI conditions. The proposed adaptive neural network control scheme is robust against motion disturbances, parametric uncertainties, time-varying delays, and input dead zones, which is validated by simulation studies.
机译:在本文中,考虑了以协作方式承载共同对象的多个移动机械手的时延和输入死区不确定性,研究了针对单主机-多从机遥操作的自适应神经网络控制。首先,在任务空间中开发了由一个主机器人,多个协同从机器人和对象组成的远程操作系统的简洁动态。为了处理通信信道中的不对称时变延迟和未知的非对称输入死区,遥操作系统的非线性动力学通过反馈线性化转换为两个子系统:本地主或从属动力学,包括未知的输入死区和为此而延迟的动力学同步。然后,提出了一种基于线性矩阵不等式(LMI)和自适应技术的模型参考神经网络控制策略。先进的控制方法可确保定义的跟踪误差收敛为零,而协调内力误差仍然有限,并且可以任意减小。在整个本文中,通过特定LMI条件下的显式Lyapunov技术进行稳定性分析。所提出的自适应神经网络控制方案对运动干扰,参数不确定性,时变延迟和输入死区具有鲁棒性,这已通过仿真研究得到验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号