首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Common Nature of Learning Between Back-Propagation and Hopfield-Type Neural Networks for Generalized Matrix Inversion With Simplified Models
【24h】

Common Nature of Learning Between Back-Propagation and Hopfield-Type Neural Networks for Generalized Matrix Inversion With Simplified Models

机译:简化模型的广义矩阵求逆与反向传播和Hopfield型神经网络学习的共同性质

获取原文
获取原文并翻译 | 示例

摘要

In this paper, two simple-structure neural networks based on the error back-propagation (BP) algorithm (i.e., BP-type neural networks, BPNNs) are proposed, developed, and investigated for online generalized matrix inversion. Specifically, the BPNN-L and BPNN-R models are proposed and investigated for the left and right generalized matrix inversion, respectively. In addition, for the same problem-solving task, two discrete-time Hopfield-type neural networks (HNNs) are developed and investigated in this paper. Similar to the classification of the presented BPNN-L and BPNN-R models, the presented HNN-L and HNN-R models correspond to the left and right generalized matrix inversion, respectively. Comparing the BPNN weight-updating formula with the HNN state-transition equation for the specific (i.e., left or right) generalized matrix inversion, we show that such two derived learning-expressions turn out to be the same (in mathematics), although the BP and Hopfield-type neural networks are evidently different from each other a great deal, in terms of network architecture, physical meaning, and training patterns. Numerical results with different illustrative examples further demonstrate the efficacy of the presented BPNNs and HNNs for online generalized matrix inversion and, more importantly, their common natures of learning.
机译:本文提出,开发和研究了两种基于误差反向传播(BP)算法的简单结构神经网络(即BP型神经网络BPNN),用于在线广义矩阵求逆。具体而言,分别针对左和右广义矩阵求逆,提出并研究了BPNN-L和BPNN-R模型。此外,针对相同的问题解决任务,本文开发并研究了两个离散时间的Hopfield型神经网络(HNN)。与提出的BPNN-L和BPNN-R模型的分类相似,提出的HNN-L和HNN-R模型分别对应于左广义矩阵求逆和右广义矩阵求逆。对于特定的(即,左或右)广义矩阵求逆,将BPNN权重更新公式与HNN状态转换方程进行比较,我们表明,这两个派生的学习表达式在数学上是相同的,尽管BP和Hopfield型神经网络在网络架构,物理意义和训练模式方面显然存在很大差异。带有不同说明性示例的数值结果进一步证明了所提出的BPNN和HNN对于在线广义矩阵求逆的有效性,更重要的是,它们具有共同的学习特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号