首页> 外文期刊>Neurocomputing >Common nature of learning between BP-type and Hopfield-type neural networks
【24h】

Common nature of learning between BP-type and Hopfield-type neural networks

机译:BP型和Hopfield型神经网络之间学习的共同性质

获取原文
获取原文并翻译 | 示例

摘要

Being two famous neural networks, the error back-propagation (BP) algorithm based neural networks (i.e., BP-type neural networks, BPNNs) and Hopfield-type neural networks (HNNs) have been proposed, developed, and investigated extensively for scientific research and engineering applications. They are different from each other in a great deal, in terms of network architecture, physical meaning and training pattern. In this paper of literature-review type, we present in a relatively complete and creative manner the common natures of learning between BP-type and Hopfield-type neural networks for solving various (mathematical) problems. Specifically, comparing the BPNN with the HNN for the same problem-solving task, e.g., matrix inversion as well as function approximation, we show that the BPNN weight-updating formula and the HNN state-transition equation turn out to be essentially the same. Such interesting phenomena promise that, given a neural-network model for a specific problem solving, its potential dual neural-network model can thus be developed. (C) 2015 Elsevier B.V. All rights reserved.
机译:作为两个著名的神经网络,基于误差反向传播(BP)算法的神经网络(即BP型神经网络,BPNNs)和Hopfield型神经网络(HNNs)已被提出,开发和广泛地研究用于科学研究。和工程应用。它们在网络体系结构,物理意义和训练模式方面有很大不同。在这篇文献综述类型的论文中,我们以相对完整和创新的方式介绍了BP型和Hopfield型神经网络之间解决各种(数学)问题的学习的共同性质。具体而言,将BPNN与HNN进行相同的解决问题任务(例如矩阵求逆和函数逼近)进行比较,我们发现BPNN权重更新公式和HNN状态转换方程实际上是相同的。这种有趣的现象承诺,给定用于特定问题解决的神经网络模型,可以开发其潜在的双重神经网络模型。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2015年第1期|578-586|共9页
  • 作者单位

    Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China|SYSU CMU Shunde Int Joint Res Inst, Shunde 528300, Foshan, Peoples R China|Minist Educ, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China|SYSU CMU Shunde Int Joint Res Inst, Shunde 528300, Foshan, Peoples R China|Minist Educ, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China|SYSU CMU Shunde Int Joint Res Inst, Shunde 528300, Foshan, Peoples R China|Minist Educ, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China|SYSU CMU Shunde Int Joint Res Inst, Shunde 528300, Foshan, Peoples R China|Minist Educ, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China|SYSU CMU Shunde Int Joint Res Inst, Shunde 528300, Foshan, Peoples R China|Minist Educ, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Guangdong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Neural networks; Common nature of learning; BP-type; Hopfield-type; Problem solving;

    机译:神经网络;学习的共同性;BP型;Hopfield型;问题解决;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号